Experimental evaluation of a binary-level symbolic
analyzer for Spectre: Binsec/Haunted

A npss

Learning from Authoritative Security Experiment Results
www. laser-workshop.org

Lesly-Ann Daniel Sébastien Bardin Tamara Rezk
CEA LIST / Université Paris-Saclay CEA LIST / Université Paris-Saclay INRIA Sophia Antipolis
France France France

Context: Detection of Spectre attacks

Spectre attacks (2018)

* Exploit speculative execution in processors

Affect almost all processors

Mispeculations lead to incorrect or transient executions
Transient executions are reverted at architectural level

But not the microarchitectural state (e.g. cache) 0

Problem. Transient executions can leak secret data

A new verification tool for Spectre

Goal. We need new verification tools to detect Spectre attacks !

Challenge. Model new transient behaviors avoiding path explosion ﬁ;uBinSEC@f
Contributions. -massHaunted

* Optimization Haunted RelSE: transient and regular behaviors at the same time
* Binsec/Haunted, binary-level verification tool for Spectre-PHT & STL
 New Spectre-STL violations [paper]

In this talk.

 Methodology for evaluating Haunted RelSE against Explicit RelSE

* Binsec/Haunted experimental evaluation

 Comparison with other tools KLEESpectre and Pitchfork

* Challenges: Spectre detection, binary analysis, symbolic execution, etc.

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

e Methodology & results: research questions, benchmark, results
* How did we get there? Implementation of Binsec/Haunted & Experimental setup
e Challenges: binary analysis, specifying secrets, validation, usability

Discussion

e Comparison against other tools

e |Intermediate/unsuccessful results

e Failures with experimental evaluation & reproduction
e Availability of Binsec/Haunted

Wrap-up

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

Discussion

Spectre-PHT & Spectre-STL

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (1dx > size)
2. Out-of-bound array access

— load secret data in v 2,
3. v isleaked to the attacker 3’*

1: 1f 1idx < size {
2 v = tab[i1dx]
3 leak (v) }

Spectre-PHT & Spectre-STL

Spectre-PHT. Exploits conditional branch predictor

1: if idx < size { ; gondll’ilc;nal |Zm|sspeculated (idx > size)
R v = tab[idx] . Out-of-bound array access
- load secret datain v 2,

3: leak (v) } 3. v isleaked to the attacker 3’*

Spectre-STL: Loads can speculatively bypass prior stores

store & secret
store a public
v = load a

leak (v)

leak (public)

Spectre-PHT & Spectre-STL

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (1dx > size)
2. Out-of-bound array access

— load secret data in v 2,
3. v isleaked to the attacker 3’*

1: 1f 1idx < size {
2 v = tab[i1dx]
3 leak (v) }

Spectre-STL: Loads can speculatively bypass prior stores

store a secret store a secret
store a public v = load a

v = load a store a public
leak (v) leak (v) ‘

leak (public) leak (secret) !i

Spectre-PHT & Spectre-STL

Spectre-PHT. Exploits conditional branch predictor

1: if idx < size { ; gondll’ilc;nal |Zm|sspeculated (idx > size)
R v = tab[idx] . Out-of-bound array access
- load secret datain v 2,

3: leak (v) } 3. v isleaked to the attacker 3’*

Spectre-STL: Loads can speculatively bypass prior stores

store a secret store a secret v = load a
store a2 public v = load a store = secret
v = load a store a2 public store a public
leak (v) leak (v) ‘ leak (V)

leak (public) leak (secret) !i

leak (init mem[al])

Definitions

* Transient executions: incorrect execution (mispeculated)
* RelSE: Relational Symbolic Execution (SE for information-flow)

* Expicit RelSE: baseline technique to model speculative execution

* Haunted RelSE: our optimization, models transient and regular
behaviors at the same time

* Binsec/Haunted: binary-analysis tool that implements Haunted RelSE

'{, Binsec/*)

TmmssHaunted

10

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

e Methodology & results: research questions, benchmark, results
* How did we get there? Implementation of Binsec/Haunted & Experimental setup
e Challenges: binary analysis, specifying secrets, validation, usability

Discussion

Experimental methodology & results

Clear Research Questions

Is Binsec/Haunted able to scale on real-world #X86 instructions
cryptographic code? e #Paths
Perfs on donna, OpenSSL, Libsodium

* Time

* Bug

RQ2. Haunted vs. Explicit * Timeout

How does Haunted RelSE compare vs. Explicit RelSE? | * Secure/Insecure
Implemented baseline Explicit in Binsec/Haunted

35" Bin %
RQ3. Binsec/Haunted vs. SoA tools {g Sec;@

o] o] o
Comparison against Pitchfork and KLEESpectre Jojoly H au nted
(Details in Discussion) https://github.com/binsec/haunted

13

https://github.com/binsec/haunted

Benchmark

* Small test cases.
e Paul Kocher’s litmus tests for Spectre-PHT*
e +a version that we patched with index-masking
e Aset of litmus tests for Spectre-STL (that we designed)

e Cryptographic primitives, compiled with -00, -0O1, -02, -03, -Ofast.
e Tea & donna *

* More complex cryptographic primitives with stack protectors.
* Libsodium secretbox *
* OpenSSL ssl3-digest-record *
* OpenSSL mee-cbc-decrypt *

* From Pitchfork

https://github.com/binsec/haunted bench

14

https://github.com/binsec/haunted_bench

Haunted vs. Explicit for Spectre-PHT (RQ1-RQ2)

Litmus tests (32 programs) 7 Libsodium & OpenSSL (3 programs) A
Paths Time Timeout Bugs X86 Instr. Time Timeout Bugs

Explicit 1546 =3h 2 21 Explicit 2273 18h 3 43

Haunted 370 15s 0 22 Haunted 8634 =8h 1 47

Tea and donna (10 programs). No difference between Explicit and Haunted ~

Take away, Haunted RelSE vs Explicit RelSE.
* At worse: no overhead compared to Explicit =~
* At best: faster, more coverage, less timeouts /]

Take away from methodology: sometimes difficult (not desirable) to aggregate results

15

Haunted vs. Explicit for Spectre-STL (RQ1-RQ2)

Paths X86 Ins. Time Timeouts Bugs Secure Insecure
Explicit 93M 2k 30h 15 22 3/4 13/23
Haunted 42 17k 24h 8 148 4/4 23/23
* Avoids paths explosion * Less timeouts
* More unique instruction explored * More bugs found
* Faster * More programs proven secure / insecure

Take away, Haunted RelSE vs Explicit RelSE.
Always wins | /

16

Comparison Binsec/Haunted against

Pitchfork & KLEESpectre (RQ3)

Target Programs PHT STL
Explicit
KLEESpectre LLVM Litmus tests © (=240x slower) NA
Tea & donna © (=equivalent)
Optims Explicit
Pitchfork Binary Litmus tests © (=equivalent) ® 6/10TO
Tea & donna ® (50x slower & TO) ® TO
Haunted Haunted
Binsec/Haunted Binary Litmus tests © ©
Tea & donna © ©

Challenges in discussion

17

How did we get there?

Implementation of Binsec/Haunted

e Written in Ocaml (5+2 kLoCs)

Info on binary
* entrypoint
e initial memory

Specification
* secretinput

Microarchitectural state
* max spec. depth (200)
e store buffer (20)

xX86

o
0L0O

2,

1;;'28 | nseC/Re| (RelSE for constant-time)

* Built on top of ®

+ Explicit RelSE
+ Haunted RelSE

, {. Binseck*) |

sHaunted (@y

https://github.com/binsec/haunted

19

https://github.com/binsec/haunted

Experimental Setup

Run expes with python script Params set according to file
For prog € { tea, donna, litmus-pht, ... }
Justrun cd prog; pyton3 expe.py

Python script x86 o1

« NoSpec) oL0O) . .

+ Explicit-PHT {O} i Bin SQC@/ e
* Haunted-PHT onenn .

* Explicit-STL) 08 @ H a u nted csv
e Haunted-STL) Params

) Laptop Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz and 32GB of RAM
Often changing !

https://github.com/binsec/haunted bench

20

https://github.com/binsec/haunted_bench

Experimental Setup

Interpret results with python script

Programs PHT Iies P Ti(s) &

Just run pyton3 stats.py to get litmespht Bxphet 761 703 1031 21

Haunted 761 188 7 22

tables from paper o N 1 & s

e Explicit 950 843 169
maske Haunted 950 182 8

16/16 -
16/16
16/16

16/16
16/16

«s - Latex table

5/5
5/5

s e X86 instructions

NoSpec 22k 5 2948 5/5

0

2

0

0

0

0

0

0

0

. - 0 -

—D\ Python script S R L
) ¢ pandas) NoSpec 2721 I 5 -0 1/1 ° T|me
1 i
0
0
1
0
0
1
1
0
6
2

NoSpec 326 5 56
tea Explicit 326 172 62
|\ Haunted 326 172 62

— Often changing ! Nospee 1809 1 4

CcSV ssl3-digest Explicit 808 9k 21600 13
— . Haunted 2502 428k 4694 13

1/1

secretbox Explicit 769 15k 2160i) 13 171
* Bug
171

Stats Haunted 3583 22M 2421 17 11
1 * Timeout

" e Secure

1/1

45/45 * |nsecure

25/25 19119
25/25 19/19

(Previously R)

NoSpec 6383 1 448

- /1
mee-cbc Explicit 696 74k 21600 17 -

Haunted 2549 22M 21600 17

csv with 84 columns NORHT ekl e 0

Haunted 32k 25.7M 34892 69

* Value of parameters
* Number of paths

* Size of formulas

e Status, ...

https://github.com/binsec/haunted bench

21

https://github.com/binsec/haunted_bench

Take away on methodology

* Clear research questions
* Clear objectives
e Associated metrics & protocol
e Clear conclusions

* We compare with other tools + in a controlled setup
(re-implementing the baseline for Explicit RelSE)

e Better too much stats than not enough!
e Rerun all expes to get static instructions count for coverage

22

Challenges

Standard challenges of binary analysis

* Entrypoint: start from main or other function symbol
* stripped binaries are more challenging

* Only for statically compiled binaries (or you have to provide stubs)

e Configuration of initial memory
e Sections to load from file: .data, .rodata, .got, .got.plt
- .bss for both unititialized variables (symbolic) & variables set to 0 (concrete)

* Choose an implementation for memset_1ifunc (indirect functions)
* _ _memset_ia32, __memset_sse? ?

All these steps might require reverse engineering

24

Specitying secrets: a challenge at binary-level

Reverse Engineering Use global variables

* Open IDA & find offset of * Use stubs to specify secrets Put secret in global variables
secrets from initial esp e Automatic © e Automatic ©

« Manual ® * Not so much realistic ® Not so much realistic &

» Close to reality © « Adds stores: & Spectre-STL

data = dword ptr -28h Nt T

out = dword ptr -20h Lt Math Global variables have symbols:

. 080e5c84 8 OBJECT GLOBAL DEFAULT 24 out
lea eax, [ebp+key] unsigned long data[2]; 080e5c8¢ 8 OBJECT GLOBAL DEFAULT 24 data
sub esp, 24h unsigned long out[2]; 080e5c94 16 OBJECT GLOBAL DEFAULT 24 key
push eax Il : :
lea eax, [ebp+out] h}gh_}nput_16(key);
push aax . w high_input_8(data); Just give high symbols to binsec
lea eax, [ebp+datal high_tnput_8(out); binsec relse -relse-high-sym key,data,out
push cax PV decipher(data, out, key);

call encipher

ZS5

Validation of Binsec/Haunted

Problem.
e Spectre attacks are difficult to find manually
 No ground truth (esp. for Spectre-STL)

Spectre-PHT Spectre-STL

Paul Kocher’s Litmus tests for Spectre-PHT [1] No ground truth except for Spectre-STL PoC [2]
» Set of 16 insecure simple test cases © * Even more difficult to identify vulnerabilities
* Still not easy to precisely identify vulnerabilities ® We crafted 14 STL-litmus tests [3]
* Number of vulnerabilities, locations, etc. e Still needs more doc (coming soon!) to be
* We added patched versions with index-masking usable

+ validation against Pitchfork and KLEESpectre on these litmus test (when possible)
& manually check in case of deviation
+ used for regression testing
[1] https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrevi.c

[2] https://github.com/IAIK/transientfail/tree/master/pocs/spectre/STL
[3] https://github.com/binsec/haunted bench/blob/master/src/litmus-stl/programs/spectrev4.c 26

https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrev1.c
https://github.com/IAIK/transientfail/tree/master/pocs/spectre/STL
https://github.com/binsec/haunted_bench/blob/master/src/litmus-stl/programs/spectrev4.c

Interpreting results: case Spectre-PHT

case_ 1(idx) {
if (idx < publicarray_size) {

temp &= publicarray2[publicarray[idx] * 512];
r

V * Insecure memory access 0x000011d3
' Binsec/*) y
e Counterexample:
H au nted Oxffffccld: 0x00020024

secretarray[4] = is_secret

[...]

27

Interpreting results: case Spectre-PHT

case_ 1(idx) {
if (idx < publicarray_size) {

temp &= publicarray2[publicarray[idx] * 512];

+
With a bit of reverse
V * Insecure memory access 0x000011d3 j
mov ¢l, (publicarray2 - 4000h)[eax+edx] «— Ioad publicarray[idx]
' Binsec/*) y
e Counterexample:
H au nted Oxffffccld: 0x00020024 <«— initial esp + RE = idx = 0x20024
secretarray[4] = i1s_secret
[...] l

publicarray[0x20024] = secretarray[4]

28

Interpreting results: case Spectre-PHT

case_ 1(idx) {
if (idx < publicarray_size) {

temp &= publicarray2[publicarray[idx] * 512];

+
With a bit of reverse
V * Insecure memory access 0x000011d3 j
mov ¢l, (publicarray2 - 4000h)[eax+edx] «— Ioad publicarray[idx]
' Binsec/*) y
e Counterexample:
H au nted Oxffffccld: 0x00020024 <«— initial esp + RE = idx = 0x20024
secretarray[4] = i1s_secret
[...] l

publicarray[0x20024] = secretarray[4]

Interpreting results requires manual effort
29

Interpreting results: case Spectre-STL

B | n SeC@/ * Location of violation
* |nitial memory configuration
H a U nted List of loads that bypass a store

Encode in smt-formula. Solver will return its choice in counterexample.
e Address of out-of-order loads load_08049d27_from_main-mem: True
e Address of forwarding store load_08049d1c_from_08049cf5: True

30

Summary of challenges

e Standard to binary analysis
— Difficult to use, might require reverse engineering
v" We can automate many things if we have symbols

* Specifying secrets
* Tradeoff between realism & usability

e Spectre attacks

— Validation is not easy, still a manual process
v" Existing litmus tests for Spectre-PHT + new litmus for Spectre-STL
v" Cross-validated against Pitchfork and KLEESpectre

— Difficult to understand vulnerabilities
v Encoding in smt-formula for Spectre-STL

Usability crucial for running more experiments & validation & sharing

31

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

Discussion

e Comparison against other tools

e |Intermediate/unsuccessful results

e Failures with experimental evaluation & reproduction
e Availability of Binsec/Haunted

Wrap-up

Comparison against other tools: not so easy

Recompiled for 32-bit architecture
No execution time reported in paper

KLEESpectre (KLEE, SE) Pitchfork (Angr, SE + tainting secrets)

* Could not compare programs with syscalls (restrict to litmus, tea & donna)
* OQOutputs only vulnerabilities found & exec time

Use cases from Pitchfork)) Rerun Pitchfork for comparison

* LLVM tool * Adapted to match Binsec/Haunted:

e Spectre-PHT only Pitchfork-cont

* Not exactly the same property (loads only) e Have to deal with TO & OOM

* False positive (one nested spec. cond?) * Spurious vulnerabilities (in .data section)?

Results to take with pinch of salt, not always related to what we want to measure
— Need to compare Explicit vs Haunted in Binsec/Haunted
Tools easy adapt & run on my test cases ©!

33

Intermediate results

* Which solver to use: boolector, z3, vices, cvc4?

boolector is better but sometime it is stuck while z3 solves the query (overflow
on memory indexes)

* Path constraint as a big conjunction at the end of the formula or just
assert constraints when they come ?

— Does not matter

e Simpler is not always better ! Simpler but slower to solve

pcANc;=TAc, =Twhenc,=c¢, 2> pcAhc =T _—

34

Intermediate results

* Which solver to use: boolector, z3, vices, cvc4?

boolector is better but sometime it is stuck while z3 solves the query (overflow
on memory indexes)

* Path constraint as a big conjunction at the end of the formula or just
assert constraints when they come ?

— Does not matter

e Simpler is not always better ! Simpler but slower to solve

pcANc;=TAc, =Twhenc,=c¢, 2> pcAhc =T _—

Things | tested quickly, results not really recorded &
Lesson learned: It is a good practice to document the intermediate results

35

Things | tried that did not succeed

Trying to help the solver.

* Reduce size of query by removing redundant insecurity formulas
— up to 50% size reduction, usually around 30% but no impact on time

Propagate info in symbolic store to simplify expressions.

Symbolic store: v+~ {a, b, c,d} Retire value a (v1) Retire value a (v2)

o v {a,b,c, d} v {ab,c,d}
Formula: ¢) Solver F

VEaANQ)
Things | tested quickly, results not really recorded ©

SMT-Solver can be hard to satisfy

Lesson learned: ,
{ Investigate bottlenecks & focus on them

36

Other things | tried but couldn’t put in the paper

* Explore different strategies for computing speculation depth [‘1]
* Static: Speculate for 200 instructions
* Hybrid: Speculate only when conditional depends on memory
* Dynamic: Retire conditional instructions when older memory access is retired

- . . Table 7: Spectre-PHT gadget classification and the number of
]
Linux kernel (msplred from [2]) occurrences per gadget type in Linux kernel v5.0.
* Get compare & execute gadgets

Gadget Example (Spectre-PHT) #Occurrences
* Had to search & identify myself Prefetch if (i<ien a) (a(il;] 172
* Not easy ® (macros + inl. asm) Compare £ (i<eN &) (if(ali)==k) ();) 127
. Index f(i<LEN_A){y = blali]l*x];} O
— Analysis of syscall handler Execute if(i<iEN_A) {a[i] (void);) 16

[1] Wu, Meng, and Chao Wang. "Abstract interpretation under speculative execution.” PLDI '19.

[2] Canella, Claudio, et al. "A systematic evaluation of transient execution attacks and defenses." USENIX Security '19 37

Fails with experiments

When trying to run my expes.

 oomkiller stories (50% swap is too late)

 Beware other programs running

e Don't forget caffeine (disables auto-suspend)

 Don't forget to plug your laptop (-50% perfs on battery)

When trying to reproduce.

* Why are my experimental results 4x slower than usual ?
—> Because CPU freq is blocked at 800MHz instead of 4GHz

* Why can’t | reproduce last month results ?
—> Because new boolector version 3.2.0 - 3.2.1 = 221 memory consumption + oom

Lots of possible causes, often time-consuming to debug
Record commit hash can help

37

Availability of Binsec/Haunted

{. Binsec/@/

‘smeaHaunted

S & Bench on Github: https://github.com/binsec/haunted
JHTEES S BERE on B https://github.com/binsec/haunted bench

Docker image on zenodo: DOl 10.5281/zenodo.4442337

* Binsec/Haunted

e Expes: csv results + binaries + scripts
e Ocaml 4.05

* Boolector 3.2.0

Compiler | used for expes

Exact version of python packages

Exact version of all opam dependencies
KLEESpectre & Pitchfork setup

https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

Takeaways

Difficult to compare to other tools
» Implementing our own baseline gives control on what is measured

Solvers are sometimes difficult to satisfy

Document unsuccessful/intermediate experimental results
> Otherwise they are forgotten ®

Sometime it is difficult to reproduce old results
»Log commit hash during expes & beware changing versions of dependencies!

Community is great ©
> Nice use cases + easy to use tools

40

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

e Methodology & results: research questions, benchmark, results
* How did we get there? Implementation of Binsec/Haunted & Experimental setup
e Challenges: binary analysis, specifying secrets, validation, usability

Discussion

e Comparison against other tools

e |Intermediate/unsuccessful results

e Failures with experimental evaluation & reproduction
e Availability of Binsec/Haunted

Wrap-up

Next steps

* Improving usability is still work in progress
e Better documentation for Spectre-STL litmus tests

* Try to build a more reproducible setup

* Pinning versions of dependencies
o P

* Thinking of systematic ways to avoid failed experiments?

42

Clear Research Questions

RQ1. Effectiveness

Is Binsec/Haunted able to scale on real-world
cryptographic code?

Perfs on donna, OpenSSL, Libsodium

RQ2. Haunted vs. Explicit
How does Haunted RelSE compare vs. Explicit RelSE?
Implemented baseline Explicit in Binsec/Haunted

RQ3. Binsec/Haunted vs. SoA tools
Comparison against Pitchfork and KLEESpectre

* #X86 instructions
* #Paths

* Time

* Bug

* Timeout

¢ Secure/Insecure

1 Binsec
SsessHaunte

https://github.com/binsec/haunted

43

Clear Research Questions Specifying secrets: a challenge at binary-level

RQ1. Effectiveness Reverse Engineering Use C stubs

Use global variables

Is Binsec/Ha_unted able to scale on real-world * #X86 instructions + Open IDA & find offset of * Use stubs to specify secrets * Put secret in global variables
cryptographic code? « #Paths secrets from initial esp « Automatic © .« Automatic ©
Perfs on donna, OpenSSL, Libsodium « Time + Manual ® « Not so much realistic ® « Not so much realistic ®
+ Bug + Close to reality © + Adds stores: ® Spectre-STL

RQ2. Haunted vs. EXp“Cit * Timeout data - :uor: ptr -28h main() {

L out = dword ptr -26h ’ | | iables h Is:
How does Haunted RelSE compare vs. Explicit RelSE? + Secure/Insecure key = dword ptr -18h Ga V”abes av Smbos e

Value Size Type inc Vis Ndx Name

Implemented baseline Explicit in Binsec/Haunted lea eax, [ebp+key] Y e T i & e

16 0BJECT GLOBAL DEFAULT 24 key

sub esp, 24h

] :
0 U, : Blnsec o push eax P K high_input_16(key);

RQ3. Binsec/Haunted vs. SoA tools aon H t :::h ::: [ebp+out] . high_input_8(data); Just give high symbols to binsec
Compa”’son UQ'GfTPSf PI'tCth."k and KLEESPBCUB “ a u n e lea eax, [ebp+data] high_input_8{out); binsec relse -relse-high-sym key,data,out

https://github.com/binsec/haunted push oax iV decipher(data, out, key);
call encipher

44

Clear Research Questions Specifying secrets: a challenge at binary-level

Use global variables

Reverse Engineering Use C stubs

Is Binsec/Ha_unted able to scale on real-world * #X86 instructions + Open IDA & find offset of * Use stubs to specify secrets * Put secret in global variables
cryptographic code? « #Paths secrets from initial esp « Automatic © .« Automatic ©
Perfs on donna, OpenSSL, Libsodium « Time + Manual ® « Not so much realistic ® « Not so much realistic ®
+ Bug + Close to reality © + Adds stores: ® Spectre-STL

RQ2. Haunted vs. EXp“Cit * Timeout data - :uor: ptr -28h main() {

L out = dword ptr -26h ’ | | iables h Is:
How does Haunted RelSE compare vs. Explicit RelSE? * Secure/Insecure key = dword ptr -18h Gba V“abes av Smbos o

Size Type ind Vis Ndx Name

Implemented baseline Explicit in Binsec/Haunted lea eax, [ebp+key] ita Y e T i & e

16 0BJECT GLOBAL DEFAULT 24 key

sub esp, 24h out[2];

]
0 U, : Blnsec o push eax P K high_input_16(key);

i lea eax, [ebp+out . .
RQ3. Binsec/Haunted vs. SoA tools aon H t et eax [ebp+out] . high_input_8(data); Just give high symbols to binsec
Compafison UQ'GiTPSf PI'tCth."k and KLEESPECUB ! “ a u n e lea eax, [ebp+data] high_input_8{out); binsec relse -relse-high-sym key,data,out
https://github.com/binsec/haunted push oax PV decipher(data, out, key);

call encipher

Comparison against other tools: not so easy

Recompiled for 32-bit architecture
No execution time reported in paper

KLEESpectre (KLEE, SE)

¢ Could not compare programs with syscalls (restrict to litmus, tea & donna)
¢ Qutputs only vulnerabilities found & exec time

Use cases from Pitchfork)) Rerun Pitchfork for comparison

Pitchfork (Angr, SE + tainting secrets)

¢ LLVM tool ¢+ Adapted to match Binsec/Haunted:

* Spectre-PHT only Pitchfork-cont

* Not exactly the same property (loads only) + Have to deal with TO & OOM

* False positive (one nested spec. cond?) + Spurious vulnerabilities (in .data section)?

Results to take with pinch of salt, not always related to what we want to measure
- Need to compare Explicit vs Haunted in Binsec/Haunted
Tools easy adapt & run on my test cases ©!

Clear Research Questions Specifying secrets: a challenge at binary-level

Use global variables

Reverse Engineering Use C stubs

Is Binsec/Ha_unted able to scale on real-world * #X86 instructions + Open IDA & find offset of * Use stubs to specify secrets * Put secret in global variables
cryptographic code? o #Paths secrets from initial esp + Automatic © * Automatic ©
Perfs on donna, OpenSSL, Libsodium « Time + Manual ® « Not so much realistic ® « Not so much realistic ®
+ Bug + Close to reality © + Adds stores: ® Spectre-STL
RQ2. Haunted vs. EXp“Cit * Timeout data - :uor: ptr -28h main() {
L out = dword ptr -26h ’ | | les h |
How does Haunted RelSE compare vs. Explicit RelSE? |+ Secure/Insecure ey = dword ptr -18h °love Va”abes av Smbos T
Size Type ind Vis Ndx Name
Implemented baseline Explicit in Binsec/Haunted lea eax, [ebp+i] 1; gl G Biiiﬁﬂ o
' um[zj 16 OBJECT GLOBAL DEFAULT 24 key

sub esp, 24h

0|1 Blnsec o push eax Pk high_input_16(key);

RQ3. BinSEC/Haunted vs. SoA tOO|S . .n H t :;::h :::. [ebp+out] o h:Lgh_:mput_B(data); Just give high symbols to binsec
Comparison against PI'tCth."k and KL.EESpectre : a u n e lea eax, [ebp+data] high_tnput_8(out); binsec relse -relse-high-sym key,data,out

https://github.com/binsec/haunted push oax iV decipher(data, out, key);
call encipher

Availability of Binsec/Haunted

Comparison against other tools: not so easy

. Recompiled for 32-bit architecture . . ol B B H
U f Pitchfork Rerun Pitchfork for comparison
5¢ cases from Fitehior) No execution time reported in paper) P I n Sec o

0 Ilﬂ
KLEESpectre (KLEE, SE)

smmssHaunte
¢ Could not compare programs with syscalls (restrict to litmus, tea & donna)

Pitchfork (Angr, SE + tainting secrets)

= Outputs only vulnerabilities found & exec time . https://github.com/binsec/haunted
Sources & Bench on Github: .]

« LLVM tool - Adapted to match Binsec/Haunted: https://github.com/binsec/haunted bench

* Spectre-PHT only Pitchfork-cont -

* Not exactly the same property (loads only) « Have to deal with TO & OOM = =

* False positive (one nested spec. cond?) « Spurious vulnerabilities (in .data section)? Docker image on zenodo: DOl 10.5281/zenodo.4442337
* Binsec/Haunted — Compiler | used for expes

Results to take with pinch of salt, not always related to what we want to measure + Expes: csv results + binaries + scripts — Exact version of python packages

- Need to compare Explicit vs Haunted in Binsec/Haunted * Ocaml4.05 — Exact version of all opam dependencies

* Boolector3.2.0 — KLEESpectre & Pitchfork setup

Tools easy adapt & run on my test cases ©!

