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execution. A well-known analysis technique that scales well
on binary code is symbolic execution (SE) [4], [5]. In order
to analyze speculative constant-time, it must be adapted to
additionally consider transient execution introduced by the
speculative semantics. However, modeling these new behaviors
explicitly does not scale because it quickly leads to state explo-
sion. Therefore, the challenge is to optimize this exploration
in order to make the analysis applicable to real code.

Proposal. In our paper, “Hunting the Haunter—Efficient
Relational Symbolic Execution for Spectre with Haunted
RelSE” [6], we proposed a novel technique, Haunted RelSE,
to model speculative behaviors more efficiently, and de-
tect Spectre-PHT and Spectre-STL vulnerabilities. We imple-
mented it in a new static analyzer for binary-code, called
BINSEC/HAUNTED and evaluated it on small examples and
on real-world cryptographic code. In summary, we proposed
the following contributions:

• We design a dedicated technique on top of relational
symbolic execution, named Haunted RelSE, which key
idea is to model transient and sequential (in order)
behavior at the same time;

• We propose a verification tool, BINSEC/HAUNTED, im-
plementing Haunted RelSE and perform an experimental
evaluation on 1) a well-known litmus tests (small test
cases) for Spectre-PHT, 2) a new set of litmus tests for
Spectre-STL that we propose, 3) on real-world crypto-
graphic code. We also compare against two state of the
art tools, KLEESpectre [7] and Pitchfork [3];

• Finally, we report new Spectre-STL violations concerning
index-masking—a countermeasure against Spectre-PHT,
and PIC options [8] from the gcc compiler.

In this paper, we detail and reflect on the experimental aspects
of our work and draw general takeaways.

• Section II introduces technical details that are necessary
for the comprehension of this paper. We refer the inter-
ested reader to [6] for more details on our contributions;

• Section III presents our testbed setup, along with general
discussions on availability of artifacts and reproducibility
of results;

• Section IV details our experimental protocol, along with
general discussions on our methodology stemming from
the software engineering community;

Abstract—Spectre attacks are transient execution attacks af-
fecting modern processors and exploitable via software. Several 
tools have been proposed to detect Spectre vulnerabilities in 
software but most of these tools do not scale on real-world binary 
code. BINSEC/HAUNTED is one existing tool that scales and that 
has been evaluated on real-world binary cryptographic code.

In this paper, we detail the experimental aspects of BIN-
SEC/HAUNTED, but also take a step back to draw more gen-
eral conclusions. We discuss general challenges and solutions 
regarding artifact reproducibility and availability, methodology, 
comparison against other tools, and pitfalls of experimental 
evaluation. We also discuss more specific challenges regarding 
Spectre vulnerability detection, e.g. prototype validation when 
ground truth is not easily accessible; and challenges relevant 
to binary-level analysis and symbolic execution, e.g. improving 
usability of binary-level tools or implementation choices in 
symbolic analyzers.

I. INTRODUCTION

Modern CPUs performance relies on complex hardware
logic, including out-of-order execution and speculations. In
order to improve performance, the CPU can, for instance, try
to predict the next target of a conditional jump and execute
instructions ahead of time. If the guess was incorrect, the CPU
discards the speculative execution by reverting the affected
state of the architecture. Reverted executions, also known as
transient executions, are meant to be transparent from the
architectural point of view.

Unfortunately, transient executions leave observable mi-
croarchitectural side effects that can be exploited by an at-
tacker to recover secrets at the architectural level. This behav-
ior is exploited in Spectre attacks [1] which were made public
in early 2018. To date, there are four known main variants
of Spectre attacks [2]. This work focuses on two of them:
Spectre-PHT which exploits the conditional branch predictor,
and Spectre-STL which exploits store-to-load dependencies.

Goal and challenge. In order to detect vulnerabilities to 
Spectre attacks in critical software—i.e. speculative constant-
time [3] violations—we need new verification tools for low-
level code which take into account the semantics of speculative
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• Section V presents the evaluation of our technique and
highlights the advantage of considering diverse metrics
and use-cases to show different facets of the performance;

• Section VI presents our comparison with state-of-the-art
tools, focusing on challenges and illustrating the necessity
to take care of comparing underlying techniques, not just
implementations (e.g. by re-implementing the baseline);

• Section VII details the challenges (and some solutions)
related to Spectre analysis at binary-level, combining
standard challenges from binary analysis (e.g. usability)
with challenges specific to Spectre (e.g. validation);

• Section VIII presents our intermediate and unsuccessful
results, illustrating difficulties and questions that arise
when implementing a symbolic analyzer;

• Section IX reports our failures when running or reproduc-
ing our experiments, together with solutions we devised
to avoid repeating them.

The content presented in this paper is original, except for
the context (Sections I and II), experimental protocol (Sec-
tions IV-A and IV-B) and experimental results (Sections V-A,
V-B and VI-B), which are taken from our previous work [6] for
the reader’s convenience. Novel content includes a description
of our testbed (Section III), discussions about our experimental
setup and evaluation (Sections IV-C, V-C, VI-A and VI-C), and
presentation of intermediate results and failures (Sections VIII
and IX).

II. BACKGROUND

This section presents necessary background on Spectre,
speculative constant-time and relational symbolic execution.

Spectre attacks. In modern processors, instructions can be
executed out-of-order, as soon as their operands are available.
Processors also employ speculation mechanisms to predict
the outcome of certain instructions before the actual result is
known. Instructions streams resulting from a mispeculation—
i.e. transient executions—are reverted at the architectural level
(e.g. register values are restored) but can leave microarchitec-
tural side effects (e.g. cache state is not restored). While these
microarchitectural side effects are meant to be transparent to
the program, an attacker can exploit them via side-channel
attacks [9], [10]. Spectre attacks [1] exploit this speculation
mechanism to trigger transient executions of so called spectre
gadgets that encode secret data in the microarchitectural state,
which is finally recovered via side-channel attacks. There are
four variants of Spectre attacks, classified according to the
speculation mechanism they exploit [2]. In this work we focus
on two variants:
• Spectre-PHT [1], [11] exploits the Pattern History Table

which predicts conditional branches,
• Spectre-STL [12] exploits the memory disambiguation

mechanism predicting Store-To-Load dependencies.

Spectre-PHT. In Spectre-PHT, first introduced as Spectre
variant 1 by Kocher et al. [1], the attacker abuses the branch
predictor to intentionally mispeculate at a branch. Even if at
the architectural level, a conditional statement in a program

ensures that memory accesses are within fixed bounds, the
attacker can lead the PHT to mispredict the value of a branch
to transiently perform a memory access out-of-bounds. This
out-of-bound access leaves observable effects in the cache that
can ultimately be used to recover the out-of-bound read value
(Listing 1).

uint32_t publicarray_size = 16;
uint8_t publicarray[16] = { 1 .. 16 };
uint8_t publicarray2[512 * 256];
uint8_t secretarray[16]; // Secret data
// This function encodes toLeak in the cache
void leakThis(uint8_t toLeak) {
tmp &= publicarray2[toLeak * 512];

}
void case_1_masked(uint32_t idx) { // idx=131088
if(idx < publicarray_size) { // Mispeculated
// Out-of-bound read, reads secretarray[0]
uint8_t toLeak = publicarray[idx];
leakThis(toLeak);}} //Leaks secretarray[0]

Listing 1: Illustration of a Spectre-PHT attack.

Spectre-STL. To allow the CPU to transiently execute store
instructions and to avoid stalling on cache-miss stores, store
instructions are queued in a store buffer. Instead of waiting
for preceding stores to be retired, a load instruction can take
its value directly from a matching store in the store buffer
with store-to-load forwarding. Additionally, when the memory
disambiguator predicts that a load does not alias with pending
stores, it can speculatively bypass pending stores in the store
buffer and take its value from the main memory [13]. This
behavior is exploited in the Spectre-STL [12] variant to load
stale values containing secret data that are later encoded in the
cache (Listing 2).

void case_1(uint32_t idx) {
uint8_t* data = secretarray;
uint8_t** data_slowptr = &data;
(*data_slowptr)[idx] = 0; // Bypassed store
leakThis(data[idx]);} // Leaks secretarray[idx]

Listing 2: Illustration of a Spectre-STL attack.

Speculative constant-time (SCT). Constant time [14] is a
popular programming discipline for cryptographic code in
which programs are written so that they do not store, load
or branch on secret values in order to avoid leaking secrets
via side-channels. However, constant-time is not sufficient to
prevent Spectre attacks. For example, Listing 1 is a trivially
constant-time program since there is no secret-dependent
branch or memory access. However, the program is vulnerable
to Spectre-PHT since an attacker can mistrain the branch
predictor and leak secrets in transient execution. Speculative
constant-time [3] is a recent security property that extends
constant-time to take transient executions into account.

Definition 1 (Speculative constant-time [3]). A program is
secure w.r.t. speculative constant-time if and only if for each
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pair of (speculative) executions with the same public input and
agreeing on their speculation decisions, (e.g. follow regular
path or mispeculate at a branch), then their control-flow and
memory accesses are equal.

Note that SCT (like constant-time and other information
flow properties) is not a property of one execution trace
(safety) as it relates two execution traces (it is a 2-hypersafety
property [15]) and thus requires appropriate tools to efficiently
model pairs of traces.

Symbolic execution. Symbolic Execution (SE) [4], [5], [16]
consists in executing a program on symbolic inputs. It builds a
logical formula, known as the path predicate, to keep track of
branch conditions encountered along the execution. In order to
determine if a path is feasible, the path predicate can be solved
with an SMT solver [17]. SE can also check assertions in order
to find bugs or perform bounded-verification (i.e., verification
up to a certain depth).

Relational Symbolic Execution (RelSE). RelSE [18], [19]
is a promising approach to extend SE for analyzing security
properties of two execution traces such as SCT. It symbolically
executes two versions of a program in the same symbolic
execution instance and maximizes sharing between them.
For instance, to analyze constant-time, RelSE models two
programs sharing the same public input but with distinct secret
input and, along the execution, ensures that the outcome of
conditional branches and the memory indexes are equal in both
execution—meaning that they do not depend on the secret.

BINSEC/HAUNTED. BINSEC/HAUNTED [6] is a binary-level
analysis tool for Spectre-PHT and Spectre-STL. It relies on
relational symbolic execution and performs bug-finding and
bounded-verification for speculative constant-time (SCT) at
binary-level. It implements an optimization called Haunted
RelSE which key idea is to model transient and sequential
behavior at the same time, while the standard approach—that
we call Explicit RelSE—models transient executions explicitly
by forking symbolic execution.

III. IMPLEMENTATION AND SETUP

This section describes the implementation of BIN-
SEC/HAUNTED (Section III-A) and our experimental setup
(Section III-B), discusses availability and reproducibility of
our experiments (Section III-C), and concludes with general
takeaways on reproducibility and availability of experimental
evaluations (Section III-D).

A. Implementation of Binsec/Haunted

We implement our technique Haunted RelSE on top of BIN-
SEC [20] binary analysis tool, and in particular we build upon
its relational symbolic execution engine BINSEC/RELSE [19].
It provides:

1) a loader to easily access information encoded in the
binary (ELF or PE format),

2) disassemblers from x86, ARMv7 or RiscV to an inter-
mediate representation suitable for analysis (DBA [21]),

3) a relational symbolic execution engine,
4) easy manipulation and simplification of SMT formulas

and interfacing with many SMT-solvers (z3, boolector,
cvc4, yices).

On top of this infrastructure, we add support for the speculative
semantics and in particular, we implement our technique
Haunted RelSE in the RelSE engine, as well as Explicit RelSE
as a baseline, for a total of ≈ 2k lines of OCaml code.

B. Testbed Setup

This section details the testbed that we set up to run our ex-
periments (experiments themselves are detailed in Section IV).

Our experiments are automated with python scripts, which
set the appropriate parameters (e.g. timeout, entrypoint, ini-
tial memory, secret input, etc.) before running the analysis.
Each binary is analyzed in five configurations: 1) a baseline,
NoSpec, doing sequential constant-time analysis, 2) Explicit
RelSE for Spectre-PHT, 3) Haunted RelSE for Spectre-PHT,
4) Explicit RelSE for Spectre-STL, 5) Haunted RelSE for
Spectre-STL. Everything is pre-configured and a user just has
to run the command python expe.py to reproduce the
experiments.

Results are recorded as csv files, along with many infor-
mation about the analysis (e.g. execution time, time of the
SMT-solver, number of paths, number of instructions, number
and type of queries sent to the solver, etc.). Finally a python
script processes these csv files using the pandas library and
generates the latex tables included in Section V.

In our experience, it is better to record too much infor-
mation than not enough. For example, we had to rerun all
our experiments because we did not record the number of
unique instructions explored—which we realized later, would
give a good idea of the coverage of the analysis. Moreover,
diverse metrics are really useful for debugging and can give a
good idea on how to improve performance (e.g. whether the
bottleneck lies in the analysis or in the SMT-solver). For these
reasons, we record a lot of information during our analysis (84
columns in csv files) while only a small fraction is used in the
paper.

C. Availability and reproducibility

The source code of BINSEC/HAUNTED has been released
on github at https://github.com/binsec/haunted and the material
to reproduce the experimental evaluation has been released at
https://github.com/binsec/haunted_bench, including 1) binary
codes analyzed in our experiments, 2) python scripts to run
BINSEC/HAUNTED on these programs, 3) csv files generated
during our evaluation, 4) python script to process the results
and generate latex tables, 5) instructions to reproduce experi-
ments and run BINSEC/HAUNTED on test cases.

We also created a docker image containing the compiled
code, source code, and all necessary material to reproduce the
experiments—including OCaml compiler to recompile, and the
boolector [22] solver, version 3.2.0, used in our experiments.
We released this artifact on zenodo [23].
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Going further. To be fully reproducible, our artifact
should also include our evaluation of state-of-the-art tools,
KLEESpectre and Pitchfork, against which we compare (see
Section VI). Because the violations in binary-code depend on
the compiler, we included both source code and compiled
code in our artifact. To further improve reproducibility, we
could also include the version of the compiler that we used
to compile our use-cases (i.e. gcc 10.1.0). Finally, to
enable other researchers to easily extend and build upon
BINSEC/HAUNTED, we should add more documentation in
source code.

D. Takeaways

During an experimental evaluation, it is better to record too
much information than not enough, as it gives good insight on
how to improve performance and can help with debugging.

Experimental setup should be designed right from the start
with reproducibility and availability in mind. Because we did
not think about these constraints when we first developed our
experimental setup, we had to revise it entirely to automate and
document our experiments and make them as easy as possible
to reproduce.

Providing an artifact with tools and benchmark is the mini-
mum for reproducible research and should be systematic when
performing an experimental evaluation. Distributing source
code is also very important to enable other researchers to build
upon the tool, or adapt it for their comparison—as we did
with Pitchfork in Section VI. For this reason, in addition to
the docker artifact, we open-sourced our tool on github.

Finally, we strongly believe that security conferences should
follow the example of software engineering and programming
language conferences and include an artifact evaluation com-
mittee to encourage authors to share artifacts.

IV. EXPERIMENTAL PROTOCOL

This section details the experimental protocol set up
in [6]. We outline clear research questions and protocol (Sec-
tion IV-A), we detail the benchmarks used for our evaluation
(Section IV-B) and we conclude with general takeaways on
our methodology stemming from the software engineering
community (Section IV-C).

A. Research questions and protocol

To assess the performance of our technique, Haunted RelSE,
and tool, BINSEC/HAUNTED, we outline the following re-
search questions:

RQ1 Effectiveness. Is our tool BINSEC/HAUNTED able to find
Spectre-PHT and Spectre-STL violations in real-world
cryptographic binaries?

RQ2 Haunted vs. Explicit. How does our technique, Haunted
RelSE compare against the standard approach Explicit
RelSE?

RQ3 BINSEC/HAUNTED vs. SoA tools. How does BIN-
SEC/HAUNTED compare against state-of-the-art tools?

To answer RQ1, we measure the performance of BIN-
SEC/HAUNTED on a set of real word cryptographic binaries.

For RQ2, we implement the standard approach Explicit RelSE
as a baseline in our tool and compare the performance of
Explicit and Haunted explorations strategies for RelSE on a set
of real word cryptographic binaries and litmus tests. Finally,
for RQ3, we compare BINSEC/HAUNTED against state-of-the-
art competitors, KLEESpectre [7] and Pitchfork [3].

Metrics. We evaluate performance in terms of:
• number of unique x86 instructions explored (Ix86)—

which gives an indication of the coverage of the analysis,
• number of paths explored (P)—which gives an indication

on path explosion,
• overall execution time (T),
• number of violations ( ), i.e. the number instructions

leaking secret data,
• number of timeouts ( ),
• number of programs proven secure (3),
• number of programs proven insecure (7).

These metrics give a good overview of the efficiency (Ix86, P,
T, ) and effectiveness ( , 3, 7) of the analysis.

B. Benchmark
We evaluate BINSEC/HAUNTED on the following programs:
• litmus-pht: 16 small insecure test cases (litmus tests)

for Spectre-PHT taken from Pitchfork’s modified set of
Paul Kocher’s litmus tests1;

• litmus-pht-patched: secure litmus tests for
Spectre-PHT, that we crafted by patching litmus-pht
with index masking [24];

• litmus-stl: a new set of secure and insecure litmus
tests that we designed for Spectre-STL2;

• Cryptographic primitives from OpenSSL and Libsodium
(detailed in Table I), including the primitives analyzed by
Pitchfork [3].

This benchmark is mostly taken from Pitchfork [3] use cases,
extended with secure litmus tests for Spectre-PHT and litmus
tests for Spectre-STL that we mainly used for validation.

Programs Type Ix86 Key Msg

tea_encrypt3 Block cipher 100 16 8

curve25519-donna4 Elliptic curve 5k 32 -

Libsodium secretbox5 Stream cipher 3k 32 256

OpenSSL ssl3-digest-rec6 HMAC 2k 32 256

OpenSSL mee-cbc-decrypt6 MEE-CBC 6k 16+32 64

Table I: Cryptographic benchmarks, with approximate static
instruction count (Ix86) (excluding libc code) and sizes of
secret keys and messages (Msg) in bytes.

1https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/
spectrev1.c

2Open sourced at: https://github.com/binsec/haunted_bench/blob/master/
src/litmus-stl/programs/spectrev4.c

3https://www.schneier.com/sccd/TEA.C
4http://code.google.com/p/curve25519-donna/
5https://doc.libsodium.org/secret-key_cryptography/secretbox
6https://github.com/imdea-software/verifying-constant-time [25]
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Compilation. Programs are compiled statically for a 32-bit
x86 architecture with gcc 10.1.0. Litmus tests, donna and
tea are compiled with options -fno-stack-protector,
-no-pie and -fno-pic in order rule out violations in-
troduced by these options and get closer to the source-level
semantics. Additionally, donna and tea are compiled for
optimization levels O0, O1, O2, O3, and Ofast. However,
Libsodium and OpenSSL are compiled in more realistic setups,
with their default Makefile (including stack protector).

Challenge of stack protectors. Error-handling code intro-
duced by stack protectors is complex and contains many
system calls that cannot be analyzed directly in pure symbolic
execution. BINSEC/HAUNTED stops path execution on syscalls
and only jump on the error-handling code of stack protectors
once per program, meaning that it might miss violations in
unexplored parts of the code. Moreover, timeout is set to 1
hour for litmus tests, tea, and donna; but extended to 6
hours for code containing stack protectors (Libsodium and
OpenSSL).

Setup. Experiments were performed on a laptop with an
Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz processor
and 32GB of RAM. In the experiments, all inputs are symbolic
except for the initial stack pointer esp (similar as related
work [3]), and data structures are statically allocated. The user
is expected to label secrets, all other values are public. We set
the speculation depth to 200 instructions and the size of the
store buffer to 20 instructions. Additionally, we only consider
indirect jump targets resulting from sequential execution and
implement a shadow stack to constrain return instructions to
their proper return site.

C. Takeaways

Our methodology is not revolutionary, but it is not yet
systematic in many security papers, while it is common in
the software engineering community.
• We define clear research questions and metrics in order

to make the evaluation protocol explicit and easy to
understand;

• We give a particular attention to the validation of the
prototype with litmus tests and cross-validation (detailed
in Section VII-D);

• We compare against state-of-the-art tools in order to
demonstrate progress over prior work (Section VI);

• We also implement the baseline, Explicit RelSE, directly
in our prototype, in order to compare close implemen-
tations and truly focus on the underlying technique (we
detail in Section VI why comparison against other tool
is not sufficient).

V. PERFORMANCE OF BINSEC/HAUNTED (RQ1/RQ2)

This section presents the experimental results reported
in [6] for Spectre-PHT (Section V-A) and Spectre-STL (Sec-
tion V-B). Performance of BINSEC/HAUNTED are reported on
a set of real word cryptographic binaries to answer RQ1;
and compared to the baseline Explicit RelSE to answer

RQ2. Finally, Section V-C discusses the importance of re-
implementing the baseline in order to compare close imple-
mentations, and of considering diverse use cases and metrics.

A. Performance for Spectre-PHT (RQ1-RQ2)
We compare the performance of Haunted RelSE and Ex-

plicit RelSE—called Haunted and Explicit in the tables for
brevity—for detecting Spectre-PHT violations. In order to
focus on Spectre-PHT only, we disable support for Spectre-
STL. Additionally, we also report the performance for standard
constant-time verification (without speculation) as a baseline,
called NoSpec. Results are presented in Table II.

Programs PHT Ix86 P T (s) 3 7

litmus-pht
NoSpec 733 48 3 - 0 16/16 -
Explicit 761 703 10331 21 2 - 16/16
Haunted 761 188 7 22 0 - 16/16

litmus-pht
masked

NoSpec 915 48 5 - 0 16/16 -
Explicit 950 843 169 - 0 16/16 -
Haunted 950 182 8 - 0 16/16 -

tea
NoSpec 326 5 .56 - 0 5/5 -
Explicit 326 172 .62 - 0 5/5 -
Haunted 326 172 .62 - 0 5/5 -

donna
NoSpec 22k 5 2948 - 0 5/5 -
Explicit 21k 1.0M 6153 - 1 4/5 -
Haunted 21k 1.0M 6162 - 1 4/5 -

secretbox
NoSpec 2721 1 5 - 0 1/1 -
Explicit 769 15k 21600 13 1 - 1/1
Haunted 3583 2.2M 2421 17 0 - 1/1

ssl3-digest
NoSpec 1809 1 4 - 0 1/1 -
Explicit 808 9k 21600 13 1 - 1/1
Haunted 2502 428k 4694 13 0 - 1/1

mee-cbc
NoSpec 6383 1 448 - 0 1/1 -
Explicit 696 74k 21600 17 1 - 1/1
Haunted 2549 22M 21600 17 1 - 1/1

Total
NoPHT 35k 109 3415 0 0 45/45 -
Explicit 25k 1.1M 81453 64 6 25/25 19/19
Haunted 32k 25.7M 34892 69 2 25/25 19/19

Table II: Performance of BINSEC/HAUNTED for Spectre-PHT.

• For litmus-pht and litmus-pht-masked, we see
that Haunted RelSE: 1) explores less paths (4×) for an
equivalent result, mitigating path explosion, 2) analyzes
programs faster (1437× and 21× respectively), achieving
performance in line with NoSpec;

• For tea and donna there is no difference between Ex-
plicit and Haunted. Indeed, because these programs only
have a single feasible path in regular execution, Explicit
RelSE forks into two paths at each conditional branch
instead of four (the two other paths being unsatisfiable)
which makes it equivalent to Haunted RelSE;

• Finally, for more complex programs like Libsodium
and OpenSSL, Haunted RelSE achieves better coverage
(×3.8 more instructions explored) and less timeouts (1/3
vs. 3/3) than Explicit RelSE.

B. Performance for Spectre-STL
In order to focus on Spectre-STL only, we disable support

for Spectre-PHT. Results are presented in Table III.
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The explosion of the number of paths for Explicit RelSE
and its poor performance on litmus tests shows that encoding
transient paths explicitly is not tractable. Haunted RelSE
manages to fully explore small-size real-world cryptographic
implementations (up to one hundred instructions) and to find
violations in medium-size real-world cryptographic implemen-
tations (a few thousands instructions).

Overall, Haunted RelSE:

• Scales better on litmus-stl tests and tea, achieving
better analysis time (3152× and 3.4× speedup respec-
tively), producing less timeouts (0 vs. 7), and finding
more violations (+24);

• While it times out on more complex code, it explores
much more instruction than Explicit (8.6× more unique
instructions in total), finds 126 more violations and re-
ports 10 more insecure programs.

Programs STL Ix86 P T (s) 3 7

litmus-stl
NoSpec 328 14 .5 - 0 14/14 -
Explicit 316 37M 7205 13 2 3/4 10/10
Haunted 328 14 2.3 13 0 4/4 10/10

tea
NoSpec 326 5 .5 - 0 5/5 -
Explicit 278 12M 18000 2 5 - 1/5
Haunted 326 18 5276 26 0 - 5/5

donna
NoSpec 22k 5 2948 - 0 5/5 -
Explicit 704 12M 18000 0 5 - 0/5
Haunted 12k 5 18000 73 5 - 5/5

secretbox
NoSpec 2721 1 5 - 0 1/1 -
Explicit 225 13M 21600 4 1 - 1/1
Haunted 408 2 21600 26 1 - 1/1

ssl3-digest
NoSpec 1809 1 4 - 0 1/1 -
Explicit 204 4k 21600 3 1 - 1/1
Haunted 1763 2 21600 8 1 - 1/1

mee-cbc
NoSpec 6383 1 448 - 0 1/1 -
Explicit 200 19M 21600 0 1 - 0/1
Haunted 1627 1 21600 2 1 - 1/1

Total
NoSpec 34k 27 3407 - 0 27/27 -
Explicit 2k 93M 108004 22 15 3/4 13/23
Haunted 17k 42 88078 148 8 4/4 23/23

Table III: Performance of BINSEC/HAUNTED for Spectre-
STL.

C. Takeaways.

First, because our use-cases are diverse (from small litmus
test to real-world cryptographic primitives), they highlight dif-
ferent facets of the performance of our analysis (especially for
Spectre-PHT where we can clearly see three distinct categories
with different performance). This shows that in some cases, it
is preferable to present results in a non-aggregated form.

Second, some metrics (number of paths explored, execution
time) are meaningful on small examples, but on larger code
they become less appropriate and metrics such as number of
timeouts and coverage are more meaningful, highlighting the
importance of considering diverse performance metrics.

VI. COMPARISON AGAINST SOA TOOLS (RQ3)

To answer RQ3, we compare BINSEC/HAUNTED against
two state-of-the-art tools, Pitchfork [3] and KLEESpectre [7].
This section details the challenges of such comparison (Sec-
tion VI-A), the results (Section VI-B), and concludes with
a general discussion on comparison with other tools (Sec-
tion VI-C).

KLEESpectre [7] is an adaptation of SE for finding Spectre-
PHT violations3 (but not Spectre-STL), built on top of
KLEE [26]. Pitchfork [3] is the only competing tool which
can analyze programs for Spectre-STL. It is based on SE and
tainting and implemented on top of angr [27].

A. Challenges and some solutions

Our objective is not to compare tools per se, but to compare
underlying techniques. Unfortunately the tools are very differ-
ent and many details not related to the technique can impact
performance, making the comparison challenging. This section
details these challenges and our approaches to mitigate them
(when applicable).

LLVM vs. Binary. While BINSEC/HAUNTED and Pitchfork
operate at binary-level, KLEESpectre analyzes LLVM byte-
code which gives it a performance advantage. This also means
that the analyzed programs are different (clang LLVM vs.
gcc binaries) and might contain different vulnerabilities [19].
Nevertheless, we tried to keep the analyzed files as close as
possible by providing the same compilation options.

System calls. Symbolic analyzers might process system
calls differently. For instance, angr uses function sum-
maries to model the effect of system calls on the
symbolic state while BINSEC stops symbolic paths at
syscalls. Because the performance of the tools eventually
vary according to how they handle syscalls, we restrict
this comparison to syscall-free programs litmus-pht,
litmus-pht-masked, litmus-stl, tea, and donna
and exclude secretbox, ssl3-digest and mee-cbc.

Reported metrics. While BINSEC/HAUNTED reports many
information after its analysis (e.g. number of paths explored,
number of instructions, number of queries sent to the solver,
etc.), KLEESpectre and Pitchfork only report execution time
and vulnerabilities found. Therefore the comparison restricts
to these metrics and is less detailed than Section V.

Different properties. The properties checked by KLEESpec-
tre, Pitchfork and BINSEC/HAUNTED are not exactly the same.

First, KLEESpectre reports several types of gadgets but only
one—leak secret (LS)—can actually leak secret data and is a
violation of speculative constant-time, thus we only report LS
gadgets found by KLEESpectre.

Second, KLEESpectre focuses on leakage from insecure
loads and does not report leakage from secret-dependent
branches (missing for instance vulnerabilities using AVX-
based covert channel [28]), contrary to BINSEC/HAUNTED and

3It also includes cache modeling—disabled for our comparison.
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Pitchfork. For this reason KLEESpectre fails to report one of
the litmus test as insecure (i.e. case_10).

Third, KLEESpectre focuses on violations during transient
execution while BINSEC/HAUNTED and Pitchfork also report
violation during sequential execution. Because our benchmark
is constant-time in sequential execution, this does not influence
the number of violations found, however this may influence
the execution time as Pitchfork and BINSEC/HAUNTED have
more assertions to check.

Finally, Pitchfork reports secret-dependent store in transient
execution as insecure contrary to BINSEC/HAUNTED and
KLEESpectre which consider them secure as they are not
committed to the cache [7].

Different analysis techniques. While KLEESpectre and BIN-
SEC/HAUNTED are based on purely symbolic relational rea-
soning, Pitchfork is based on standard symbolic execution with
tainting, which is faster but possibly incorrect.

Different configurations. For Spectre-STL, Pitchfork only
supports reordering loads and stores in a window of 20
instructions, and does not allow to configure the size of the
store buffer. In BINSEC/HAUNTED, we can configure the
speculation window (set to 200) and the size of the store
buffer (set to 20)4. While this is the closest configuration
we can get, note that a load can bypass up to 20 stores in
BINSEC/HAUNTED, which makes the window larger than 20
instructions in Pitchfork.

Different implementation decisions. First, we had to mod-
ify Pitchfork to enable verification of Spectre-STL without
Spectre-PHT (which was not possible by default).

Second, while KLEESpectre and BINSEC/HAUNTED report
vulnerable instruction once, Pitchfork may report many viola-
tions at a single instruction. Thus, we post-process Pitchfork’s
results to report unique violations only. Note that it puts
Pitchfork at a disadvantage because it still checks and reports
these violations.

Third, Pitchfork stops a path after finding a violation, while
BINSEC/HAUNTED continues the execution. To provide a
closer comparison, we also consider a modified version of
Pitchfork, namely Pitchfork-cont, which does not stop after
finding a violation.

Fourth, KLEESpectre fails to report an insecure litmus test
(case_7) for no apparent reason. We suppose that they do
not consider nested speculative executions but were only able
to support this hypothesis by performing few small tests.

Finally, BINSEC/HAUNTED only considers indirect jump
targets resulting from sequential execution and implements a
shadow stack to constrain return instructions to their proper
return site. Pitchfork does not implement this mechanism and
follows transient indirect jump, leading to erratic behavior
such as executing non-executable sections5. As a consequence,
it reports 6 spurious violations in non executable .data
section.

4These are realistic values in modern processors.
5This happened in two of our Spectre-STL litmus tests.

B. Results

The results of the comparison, reported in [6], are given in
Table IV.

Programs Tool T (s) 3 7

PH
T

litmus-pht

KLEESpectre 1817 0 16 2† 14/16
Pitchfork 1.7 0 17 - 16/16
Pitchfork-cont 6.2 0 22 - 16/16
BINSEC/HAUNTED 7.2 0 22 - 16/16

litmus-pht
masked

KLEESpectre 1751 0 0 16/16 -
Pitchfork 10.2 0 0 16/16 -
Pitchfork-cont 10.2 0 0 16/16 -
BINSEC/HAUNTED 7.8 0 0 16/16 -

tea

KLEESpectre .4 0 0 5/5 -
Pitchfork 29.5 0 0 5/5 -
Pitchfork-cont 29.7 0 0 5/5 -
BINSEC/HAUNTED .6 0 0 5/5 -

donna

KLEESpectre 7825 1 0 4/5 -
Pitchfork TO 5 0 0/5 -
Pitchfork-cont TO 5 0 0/5 -
BINSEC/HAUNTED 6162 1 0 4/5 -

ST
L

litmus-stl
Pitchfork 21608* 6 11 1/4 9/10
Pitchfork-cont 21610* 6 11‡ 1/4 9/10
BINSEC/HAUNTED 2.3 0 13 4/4 10/10

tea
Pitchfork TO 5 0 - 0/5
Pitchfork-cont TO 5 0 - 0/5
BINSEC/HAUNTED 5275 0 26 - 5/5

donna
Pitchfork TO 5 0 - 0/5
Pitchfork-cont TO 5 0 - 0/5
BINSEC/HAUNTED TO 5 73 - 5/5

Table IV: Performance of BINSEC/HAUNTED, Pitchfork and
KLEESpectre on tea, and Spectre-PHT and Spectre-STL
litmus tests. Timeout ( ) is set to 1 hour. †False positives.
‡Excluding 6 spurious violations in (non executable) .data
section. *Excluding , times are respectively 8.1 and 10.6.

For Spectre-PHT, KLEESpectre, as expected, shows similar
trend as Explicit RelSE in Table II. It is slightly faster
than BINSEC/HAUNTED on tea (1.5×), but slower on
litmus-pht (250×) on litmus-pht-masked (224×).
On the contrary, Pitchfork does not seem to follow an Explicit
exploration strategy as it scales well on litmus tests. Pitchfork-
cont is slightly faster than BINSEC/HAUNTED (1.2×) on
litmus-pht, but it is 50× slower on tea and times-out
on donna.

For Spectre-STL however, Pitchfork follows the explicit
strategy which quickly leads to state explosion, poorer perfor-
mance and more timeouts. The analysis runs out-of-memory—
taking 32GB of RAM—for six cases of litmus-stl, 1 tea,
and 4 donna. Hence, Pitchfork does not scale for Spectre-STL
even on small-size binaries whereas BINSEC/HAUNTED can
exhaustively explore small-size binaries. Our results further
show that BINSEC/HAUNTED finds 112 more Spectre-STL vi-
olations, identifies 11 more insecure programs and establishes
security of 3 more programs compared to Pitchfork.

C. Takeaways

Comparing different tools is challenging as performance
eventually depends on implementation details and might not
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reflect what we really want to measure—the underlying tech-
nique. Consequently such comparison must be taken with a
pinch of salt.

For this reason, we believe that implementing our own
Explicit RelSE baseline inside BINSEC/HAUNTED to compare
against Haunted RelSE is a good solution, allowing to com-
pare very close implementations and focus on the underlying
technique (Section V).

In our experiments, we always tried our best not to put
KLEESpectre and Pitchfork at a disadvantage (e.g. larger load
reordering window in BINSEC/HAUNTED than in Pitchfork).
However it was not always easy or possible—e.g. different
performance due to different implementation decisions are
hard to mitigate.

Finally, we did not encounter any difficulty to run Pitchfork
and KLEESpectre on our own test cases, and adapting the
implementation of Pitchfork for our comparison was quite
simple, which is truly appreciable.

VII. CHALLENGES: BINARY-LEVEL & SPECTRE ANALYSIS

Implementing a verification tool for Spectre at binary-level
poses a combination of challenges: standard challenges of
binary-level (Section VII-A) and information-flow analysis
(Section VII-B), difficulties to interpret the results (Sec-
tion VII-C), and validation of the tool (Section VII-D). This
section presents some of the challenges we faced with BIN-
SEC/HAUNTED, the solutions we adopted, some opportunities
for improvement and concludes with general advice towards
improving binary-level analyzers (Section VII-E).

A. Standard challenges in binary-level analysis

Configuring initial memory. In binary level symbolic exe-
cution, the initial memory is symbolic by default, but some
parts must be initialized with information from the binary.
For instance sections .data and .rodata contain initialized
data, and a load from one of these sections should read data
directly from the binary. However, the case of the .bss
section is trickier as it contains both variables initialized to 0
— that we would like to set to 0 — and uninitialized variables
— that we would like to keep symbolic. Our solution is to keep
the .bss section symbolic by default and, when necessary,
to do some reverse engineering to specify the address ranges
to initialize to 0.

Deal with indirect functions. Indirect functions [29] are
functions whose implementation is chosen at runtime, using
a resolver function. They are used in the GNU standard
library (glibc) to implement for instance multiple version of
memset chosen depending on the CPU. To avoid analyzing
multiple implementations of memset, we replace calls to the
resolver function __memset_ifunc to calls to the specific
implementation __memset_ia32.

Limitations of BINSEC/HAUNTED. BINSEC symbolic exe-
cution engine does not have function summaries (a.k.a. stubs)
for the standard library or system calls. Therefore, we only
apply BINSEC/HAUNTED to statically compiled binaries and

stop a path when encountering a syscall6. BINSEC does not
easily handle dynamically allocated memory, thus we statically
allocate buffers.

B. Specifying secrets

BINSEC/HAUNTED has three different approaches for spec-
ifying secrets, offering different trade-offs between usability
and realism.

1) Reverse engineering. A first approach to specify secret
input is to specify them as offsets from the initial stack pointer
esp. This approach requires manual reverse engineering to
identify secret and compute their offsets (see Fig. 1).

Pro: Realistic and does not require any change in source code.
Con: Requires manual analysis and must be done each time the

program is recompiled. Therefore it is not appropriate for
large-scale experiments or for testing multiple compilers
on the same program.

Figure 1: Binary disassembled
with IDA. Let us call esp0
the initial value of the stack
pointer. Note that the push in-
struction increments esp by 4,
thus ebp is set to esp0+4.
From there we can compute
that symbolic secret input key,
data, out are located at off-
sets 0x10+0x4, 0x18+0x4,
0x20+0x4 of esp0.

2) Use function stubs. A second approach to specify secrets
directly in the source code is to use dummy functions as
illustrated in Listing 3. In symbolic execution, a call to
high_input_16(key) is replaced by a function summary
that initializes the memory at address key with 16 symbolic
byte considered as secret.

Pro: Does not require reverse-engineering and automatically
applies to any binary compiled from the source, making it
suitable for large-scale experiments or for testing multiple
compilers.

Con: Requires to either modify the source code or to put a
wrapper around the code to analyze (e.g. around the
call to a library as illustrated in Listing 3). Dummy
function calls insert loads and stores which can introduce
additional Spectre-STL violations, therefore this approach
might not be ideal for studying Spectre-STL.

3) Use global variables. A global variable in the source
program is identified in the binary with a symbol that contains
its name and address. In BINSEC/HAUNTED, a user can
specify which global variables contain secret input, and BIN-
SEC/HAUNTED will take care of initializing the corresponding

6This only happened in the error-handling code of the stack protectors.

8



// Declare symbolic secret input
uint8_t key[16]; high_input_16(key);
uint8_t data[8]; high_input_8(data);
uint8_t out[8]; high_input_8(out);

// Function to analyze
encipher(data, out, key);

Listing 3: Specify secrets with dummy functions in C source.

addresses with symbolic secret values. This is the approach
used in our experimental evaluation.

Pro: Simple, automatic, and avoids introducing new STL-
violations.

Con: Not very realistic as secret data would not be stored
directly in the binary as global variables.

Takeaway: specification at binary-level. Specifying secu-
rity policies at binary level is more challenging as devel-
opers have to transpose their reasoning from source code
to binary code (e.g. from program variables to memory ad-
dresses). Instrumentation at source level can improve automa-
tion and usability—which are necessary to run large scale
experiments—but is not always realistic, or even possible. In
BINSEC/HAUNTED, we propose different approaches for spec-
ifying secrets that offer different trade-offs between usability
and realism.

C. Facilitate interpretation of counterexamples

Improving usability of Spectre-detection tools—in particular
the interpretation of counterexamples—is crucial in order to
facilitate their validation. This section, details the strategies
implemented in BINSEC/HAUNTED in order to facilitate the
interpretation of counterexamples and highlights potential op-
portunities for improvement.

Counterexample returned by BINSEC/HAUNTED. When
detecting a violation, BINSEC/HAUNTED returns 1) the in-
struction that leaks secrets and its location, 2) the initial
configuration (memory and registers) that trigger the violation.
We also implemented an IDA script to visualize the coverage
of the analysis and highlight the violations found, allowing a
user to directly identify the instruction triggering the violation
in the assembly code.

Spectre-STL. For Spectre-STL, BINSEC/HAUNTED must ad-
ditionally return the interleaving of loads and stores leading
to the violation. Because the choice of loads and stores
interleaving is encoded in boolean variables and left to the
solver [6], we have to encode this information in the formula
and extract if from the model returned by the solver. To do
this, we encode the address of loads and address of stores in
the name of the boolean variables that encode the choices of
the solver. For instance, if the solver sets the boolean variable
load_08049d1c_from_08049cf5 to true, it means that
the load at address 0x08049d1c takes its value from the
store at address 0x08049cf5. Similarly, if the variable
load_08049d27_from_main-mem is set to true, the load

instruction at address 0x08049d27 takes its value from the
initial memory.

Further improving usability. In the initial memory configu-
ration returned by BINSEC/HAUNTED as a counterexample,
the user has to make the link between memory addresses
and variables in the source code. Even though the reverse-
engineering task is not difficult, it would enhance usability
to automatically link memory locations to program variables
when possible e.g. using symbols for global variables; or
giving the user the possibility to specify local variables of
interest at the source level.

BINSEC/HAUNTED could also easily improve the quality of
counterexamples for Spectre-PHT by reporting information on
the source of speculation—e.g. the address of the mispeculated
conditionals, like in KLEESpectre.

Finally, another improvement would be to differentiate
whether a SCT violation occurs in sequential or in transient
execution7, as these two types of violations require different
countermeasures.

D. Validation of BINSEC/HAUNTED

Validating results from BINSEC/HAUNTED is challenging
as there is no ground truth (especially for Spectre-STL), and
SCT violations are difficult to find manually.

Litmus for Spectre-PHT. To validate BINSEC/HAUNTED
for Spectre-PHT, we mainly used the set of litmus tests
developed by Paul Kocher [30] (precisely, the modified version
from Pitchfork’s benchmark8) which is a set of 16 insecure
simple test cases developed to test mitigations introduced
by compilers. However, it still required manual analysis to
precisely identify violations (e.g. number of vulnerabilities,
locations, etc.). Additionally, we created a new set of secure
litmus tests by applying the index-masking countermeasure to
this initial set of litmus tests for Spectre-PHT.

Litmus for Spectre-STL. Validating BINSEC/HAUNTED for
Spectre-STL was more challenging as there is no ground
truth except for the initial proof-of-concept9. Moreover it is
even more difficult to manually identify (or even confirm)
vulnerabilities as it requires to reason about different load and
store interleavings. Therefore, to validate BINSEC/HAUNTED,
we manually crafted and documented 14 litmus tests for
Spectre-STL10.

Cross validation. For both Spectre-PHT and Spectre-
STL, we compared BINSEC/HAUNTED against Pitchfork and
KLEESpectre on these litmus test (when possible) and manu-
ally checked the results in case of deviation. Finally, we also
use the test cases for regression testing for BINSEC/HAUNTED.

7Recall that SCT [3] prevent leaks in both sequential and transient execution
8https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/

spectrev1.c
9https://github.com/IAIK/transientfail/tree/master/pocs/spectre/STL
10Open sourced at https://github.com/binsec/haunted_bench/blob/master/

src/litmus-stl/programs/spectrev4.c

9

https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrev1.c
https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrev1.c
https://github.com/binsec/haunted_bench/blob/master/src/litmus-stl/programs/spectrev4.c
https://github.com/binsec/haunted_bench/blob/master/src/litmus-stl/programs/spectrev4.c


Connection to real Spectre attacks. Finally, making the
connection between real attacks and SCT violations discovered
by the tools is an open question. Determining if SCT violations
are exploitable requires a good understanding of the details
of the micro-architecture and is micro-architecture-specific. A
step to get closer to real attacks could be to extend SCT with
details on the micro-architecture (e.g. adding conditions under
which a processor may speculate).

Takeaway: validation of Spectre analyzers. The lack of
ground truth and the intricate nature of Spectre vulnerabilities
(i.e. combination of speculation and side channels) makes it
difficult to validate analyzers.

However, we believe that it would be difficult to provide
a precise and generic benchmark for validation. Should such
a benchmark be provided at source-level, the vulnerabilities
in the binary-code would vary with compilation, and thus
the benchmark would be imprecise; should it be provided
at binary-level for a specific architecture, it would exclude
LLVM-level tools, tools that do not handle the specific ar-
chitecture, and tools that need to recompile from source to
instrument the binary.

One way to help with validation is to improve the usability
of the tools, in order to make interpretation of the results and
cross validation easier.

E. Takeaways

Binary-level reasoning make many things more challenging,
e.g. interpretation of the results, as the user has to transpose
their reasoning from source code to binary code, and even
cross-validation as other tools do not necessarily support the
same architecture.

Most specification tasks requiring reverse engineering—
like configuring the initial memory or specifying secrets—can
be partially automated with source-level instrumentation (e.g.
using dummy functions), or using symbol information.

We believe that improving usability and automation is one
of the keys to overcome these challenges. Indeed, usability
and automation are crucial to run large scale experiments but
also to be able to understand counterexamples returned by the
analysis and can greatly help in prototype validation.

VIII. LOOSE AND UNSUCCESSFUL RESULTS

When developing a symbolic analyzer like
BINSEC/HAUNTED there are many implementation choices
to make, especially on how to build the formula sent to the
solver. Section VIII-A illustrates some implementation choices
that we faced, Section VIII-A reports our unsuccessful results,
and Section VIII-C summarizes the lessons we learned.

Note the caveat that these experiments were not rigorously
evaluated nor documented, thus they must be taken not as
facts but as illustrations of the kind of questions that arise
when implementing a symbolic analyzer.

A. Loose intermediate results

Choosing the solver. BINSEC can interface with many SMT
solvers: boolector, z3, yices, cvc4. Boolector is currently

the best on the theory used in our symbolic execution (i.e.
QF_ABV) [31], [32]. Nevertheless, we still ran some experi-
ments and confirm that it was indeed better than the others
in our case. However, on some programs, boolector failed
to solve the constraint while z3 was able to quickly find a
solution.

Specifying path constraint. In symbolic execution the path
constraint is the conjunction of conditional expressions en-
countered along the execution. In the SMT-LIB [33] format,
there are different solutions to specify this constraint. We
experimented on two variants: 1) put assertions in the for-
mula straightaway after the conditional instructions, 2) put all
conditions in a single conjunction at the end of the formula. In
our experiments, it did not make any difference so we chose
the first variant as it makes the formula more readable.

Simpler formula 6= faster to solve. In RelSE for (specula-
tive) constant-time, when encountering a conditional statement
if c where c maps to a pair of expressions 〈cl | cr〉, we
first send an insecurity query to make sure that the evaluation
of the condition is the same in both execution—i.e. that
(cl = 0) 6= (cr = 0) is unsatisfiable (meaning that (cl = 0) if
and only if (cr = 0)). Then, we continue the execution along
both branches and add the corresponding condition to the path
constraint, e.g. pc∧ cl = 0∧ cr = 0 to follow the else branch.
Note that because we know from the previous insecurity query
that (cl = 0) equals (cr = 0)), we can simplify the path
constraint as pc∧cl = 0. While this path constraint is simpler,
our experiments showed that it was actually slower to solve.

B. Unsuccessful results

Trying to help solver. In RelSE for (speculative) constant-
time, a lot of insecurity checks are added to ensure that
memory indexes and conditional expressions do not depend
on secret. We noticed that most of these checks were redun-
dant (especially when compiling without optimizations) and
added an optimization to remove duplicated checks. While
this optimization significantly reduced the size of the formula
(usually around 30%, up to 50%), it had not impact on the
solving time of the formula.

Propagate information in symbolic state. In RelSE for
Spectre-STL, a variable v maps to a set of symbolic expres-
sions v 7→ {a, b, c, d}, corresponding to the sequential and
transient values (resulting from different load and store inter-
leavings). When a transient value is retired, for instance a,
we have to add this information to the SMT formula, call
it ϕ. Without entering into unnecessary details, we can do
this by just adding an assertion to the formula i.e. similarly
as ϕ∧ v 6= a. Note that this is sufficient but not optimal,
as in the symbolic state we still have v 7→ {a, b, c, d},
potentially preventing extra simplifications. We implemented
an optimization to propagate the information to the symbolic
state to effectively get v 7→ {b, c, d}. Unfortunately, this
optimizations did not improve the performance of our analysis.
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C. Takeaways.

These intermediate results were obtained from superficial
evaluations and, retrospectively, we should have documented
them more carefully. Even intermediate and unsuccessful
experiments should be performed rigorously and documented
carefully, so their results can also be useful to others, durably
support implementation decisions, and not be forgotten.

In our experience SMT-solver can be hard to satisfy, and it
can be frustrating to spend time implementing an optimization
which is not efficient the end. From our experience with
solvers, trivial formula simplifications are quite unlikely to
improve performance.

IX. FAILURES WITH EXPERIMENTS

In this section, we report our failures when running or
reproducing our experiments and the solutions we devised to
avoid repeating them, in the hope that it helps others avoiding
these pitfalls.

Deal with out-of-memory. State-explosion in Pitchfork for
Spectre-STL leads to high memory usage and eventually runs
out-of-memory—taking 32GB of RAM and crashing the user
session, preventing from running additional experiments. To be
able to deal with out-of-memory while running experiments,
we used earlyoom [34], a daemon which kills processes when
the amount of available memory and swap is too low. We first
tried not to be too conservative and set the swap threshold to
50% but most of the time it failed to kill Pitchfork, and crashed
our experiments. In the end, we adopted a more conservative
approach and configured it to kill Pitchfork when the memory
consumption reaches 90% and the swap reaches 5%.

Beware other programs running. Having several programs
running on a machine can be a problem when running ex-
periments, especially on shared architectures, where a user
does not have full control on which programs are running.
For instance, we started to run our experiments on a shared
sever but quickly noticed erratic results. Then, we realized the
server was sometime running some other programs, taking up
a lot of ressource and impacting our performance. The best
solution is to have a dedicated machine to run experiments
but it is not always possible. In our case, we run experiments
on a laptop when not in use—during the night or week-end—
after rebooting.

Minor version changes can have big impact. When trying
to reproduce some of our own results, we noticed some
significant slowdowns. After (time-consuming) investigation,
we finally identified the cause of the performance degradation
as a boolector upgrade from 3.2.0 to 3.2.1, leading to a
significant increase of memory consumption.

Don’t forget check list. From our failures, we also derived a
small checklist that we check before running our experiments:
• Plug the computer before running experiments—we

recorded -50% performance on battery;
• Disable auto-suspend—or you computer might just go to

sleep in the middle of you experiments;

• Check that the frequency of the CPU is not stuck at
800MHz instead of 4GHz—yes, that happened to us and
we had a hard time finding why our tool was 4× slower
than usual, so now, before running our experiments, we
check grep "cpu MHz"/proc/cpuinfo.

Takeaways

These examples of failures illustrate that it is not trivial
to run quality experiments and to reproduce results. In our
experience, failures to reproduce experiments can have many
possible causes and are often time-consuming to debug. In
order to spot problems early, we encourage researchers to run
regression tests (or try to reproduce some of their results) to
spot performance changes (e.g. after modifying the implemen-
tation, or upgrading a dependency). Recording the commit-
hash of the implementation during experiments can also help
reproducing results and reducing debugging effort.

X. GENERAL TAKEAWAYS

Artifact sharing is necessary for reproducible research but
it also greatly helps the progress of research, allowing other
researchers to reuse benchmarks, to compare their work, to
build upon the artifacts, etc. For these reasons, we believe
that security conferences should include an artifact evaluation
track to encourage authors to share their artifacts.

We also encourage authors to follow a rigorous method-
ology in their experimental protocol, setting clear research
questions, taking care of comparing underlying techniques
and not just implementations (e.g. by re-implementing the
baseline), etc.

Regarding binary-level analysis, we argue that one of the
keys to improve analyzers is to improve usability and automa-
tion. Indeed, they are crucial to run large scale experiments,
to understand the results of the analysis, and most importantly
can greatly help in prototype validation.

We also argue that even intermediate and unsuccessful
experiments should be performed rigorously and documented
carefully, so they can also be more useful to the researcher
but also to others, durably support implementation decisions,
and not be forgotten.

Finally, it is not trivial to run quality experiments and to
reproduce results. Failures to reproduce experiments can have
many possible causes and are often time-consuming to debug.
We do not have a universal solution but encourage researchers
to run regression tests and try to reproduce their experiments
to spot problems early.
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