
On Building the Data-Oblivious Virtual Environment

Tushar M. Jois∗, Hyun Bin Lee†, Christopher W. Fletcher†, and Carl A. Gunter†
∗Johns Hopkins University: jois@cs.jhu.edu
†University of Illinois at Urbana-Champaign:
{lee559, cwfletch, cgunter}@illinois.edu

software must be hardened to block a plethora of microarchi-
tectural side channels (e.g., [11], [65], [73], [76]). Yet, existing
software-based techniques to block these channels—coming
from a rich line of research in data-oblivious/constant-time
programming [8], [20], [51], [59]—fall short of protecting
existing high-level language stacks such as R, Ruby and
Python. Specifically, these techniques typically require experts
to manually code core routines [8], [9], require the use of
custom domain-specific languages [13], [63], or only apply to
close-to-metal compiled languages [51], [59].

Modern high-level languages, however, require complex
stacks to support interpreted execution, just-in-time compi-
lation, etc. As a case-in-point, the popular R stack features
almost a million lines of code written in a combination of C,
Fortran, and R itself [58]. Subtle issues in any of this code
create security holes.

In our NDSS ’21 paper [42], we aimed to tackle this
problem, with the goal of extending data-oblivious/constant-
time techniques to apply to existing high-level, interpreted
languages, thus enabling TEE-level security for non-experts.
We arrived at our solution, the “Data-Oblivious Virtual Envi-
ronment (DOVE)”, after discovering a number of subtle side-
channel vulnerabilities in the R language through experimen-
tation and careful study. These bugs arose in R code that, at
first blush, appeared to be data-oblivious and thus harderned
to side-channels. The results of our analysis of R guided
the development of DOVE, as well as the experiments we
performed to validate it.

Our key strategy and insight in DOVE is this: if key
observable features of a computation are truly independent
of sensitive data, then that computation can be carried out
with a collection of stand-ins (“pseudonyms”) for the data.

To capitalize on this idea, we perform computation in
DOVE in two phases. In the first phase, we run the target
computation on pseudonyms in the chosen high-level language,
like R or Python. Since there is no sensitive data present,
this stage cannot leak sensitive information. We instrument
the programming stack so that this evaluation on pseudonyms
outputs what we call a “Data-Oblivious Transcript (DOT)”.
The DOT is akin to a straight-line code representation of the
original program, i.e., the transcript of operations performed
when the program is evaluated on the pseudonyms. In the
second phase of our computation, we evaluate the DOT on
a small Trusted Computing Base (TCB) that runs within a
TEE. This TEE contains the sensitive data, which is used
in place of the pseudonyms. Protecting sensitive data after
the DOT is constructed is relatively straightforward. Since
the DOT is similar to straight-line code, the TEE need only
apply simple transformations to evaluate it in a data-oblivious

Abstract—Users can improve the security of remote commu-
nications by using Trusted Execution Environments (TEEs) to 
protect against direct introspection and tampering of sensitive 
data. However, for applications coded in high-level, interpreted 
languages such as R, Python, and Ruby, this creates a trade-
off between programming convenience versus the risk of attacks 
using microarchitectural side channels. In our NDSS ’21 paper, 
we introduced the Data-Oblivious Virtual Environment (DOVE), 
which leverages a Data-Oblivious Transcript (DOT) that is explic-
itly designed to support computation that excludes side channels 
to bridge a complex programming environment (like R) with 
evaluation on a Trusted Execution Environment (TEE).

In this companion work, we take a more experiment-centric 
lens to the creation of DOVE. First, we show how our experi-
ments revealed a number of subtle side-channel vulnerabilities 
in the R language. Then, we discuss how these experiments 
impacted the design of DOVE, the first side-channel resistant 
R programming stack. Finally, we experimentally evaluate the 
correctness, expressiveness, data-obliviousness, and efficiency of 
our prototype DOVE implementation, showing how DOVE can 
provide practical support for complex programming languages 
with usable performance and high security assurances against 
side channels. Along the way, we highlight relevant details about 
our methodology and lessons we learned through the process.

I. INTRODUCTION

Recent commercially-available Trusted Execution Envi-
ronments (TEEs) such as Intel SGX [22], [36] and ARM 
TrustZone [4] have enabled significant progress towards the 
outsourcing of secure computation. Consider for example three 
competing drug companies investigating genomic factors for 
bipolar disorder. These companies would like to share their 
proprietary genome data and run a controlled study that 
releases only agreed-upon information to the three participants. 
TEEs enable such use cases, without requiring trust in remote 
administrator software stacks such as operating systems, using 
a combination of hardware-level isolation and cryptography.

The long-term vision pursued by TEE-based software sys-
tems (e.g., [7], [17]) is to bring TEE-level security to the 
masses where it can be used by data scientists familiar with 
existing high-level languages such as R, Ruby, and Python, but 
who may not have much background in security [14].

Here, we face a challenging problem. To achieve complete 
security from untrusted software, it is well known that TEE

Learning from Authoritative Security Experiment Results (LASER) 2021 
25 February 2021, Virtual
ISBN 1-891562-71-1
https://dx.doi.org/10.14722/laser-ndss.2021.23056
www.ndss-symposium.org

https://dx.doi.org/10.14722/laser-ndss.2021.23056


fashion on real hardware. In the worst case, where the original
computation was actually data dependent on the pseudonyms,
the resulting computation in the TEE may be functionally
incorrect but leaks no sensitive information.

Our proof-of-concept DOVE implementation1 is two-fold:
a DOVE frontend that translates programs written in the R
language to a DOT representation, and a DOVE backend that
evaluates the DOT on sensitive data inside of an Intel SGX
enclave. We validate DOVE in four domains: correctness,
expressiveness, data-obliviousness, and efficiency. We exper-
imentally compare DOVE’s results in these domains to those
of base R, using a third-party library of genomics analysis
algorithms written in R [15] applied on a real-world genomic
dataset consisting of three populations of honeybees [6].

1) This paper: We present this work as a supplement to
our main research contributions in [42]. While the structure
of this paper is largely similar to that of [42], content has
been added, removed, and reorganized as to be more useful
for an experiments-focused reader. We present the experi-
mental techniques we developed for identifying side-channel
vulnerabilities in R, and discuss how these vulnerabilities
influence the design of DOVE. This work also contains more
information about the experiments we used to validate the
runtime security (i.e., data-obliviousness) of DOVE, as well
as its expressiveness and efficiency. We also include a new
section on the lessons learned in building DOVE. Please refer
to our NDSS ’21 paper [42] for additional details on content
omitted from this work.

II. BACKGROUND

A. Programming in R

R is a statistical language that provides convenient inter-
faces for computations on arrays and matrices. Most function
calls including primitive operators like addition and subtraction
perform element-wise operations on array-like values.

1) Computation in R: R is an interpreted language [58],
and its interpreter is written mostly in C and to a lesser
extent Fortran and R itself. Every object is represented with
an S-expression [46] such that interpreter parses R statements
into S-expressions. The S-expressions are then evaluated and
dispatched to the corresponding library functions written in
C. Each C function runs on hardware as a compiled binary
object. Thus, analyzing code written in R is more complex than
analyzing code that is directly compiled and run on hardware
(e.g. C, C++).

2) Not Applicable (NA): R represents null-like, empty
values with NA, the representation of which depends on the
datatype. A real-valued S-expression in R is represented with
a IEEE 754 double; NA_REAL is defined with the special
double value NaN with a specific lower word (1954). The
interpreter treats NA differently from other values, even from
NaN. Integer and logical (i.e., boolean) S-expressions are im-
plemented with an int type, so R reserves the lowest integer
value INT_MIN for the representation of NA_INTEGER and
NA_LOGICAL.

1Code and benchmarks from [42] are available at https://github.com/
dove-project/

B. Microarchitectural Side-Channel Attacks

Microarchitectural (shortened as “µArch”) side-channel
attacks are a class of privacy-related vulnerabilities in which a
sensitive program’s hardware resource usage leaks sensitive
information to an adversary co-located to the same (or a
nearby) physical machine [30]. Over the years, numerous
hardware structures—cache architectures [56], [77], [79], [80],
branch predictors [1], [27], pipeline components [3], [5], [33]
and others [26], [32], [49], [57], [73], [76]—have been found
to leak information in this way. Many of these attacks require
that the attacker only share physical resources with the victim
(e.g., Prime+Probe and the cache [45], [56] or Drama and the
DRAM row buffer [57]), as opposed to sharing virtual memory
with the victim (e.g. [79]).

C. Enclave Execution and Intel SGX

Enclave execution [68], such as with Intel SGX [36], pro-
tects sensitive applications from direct inspection or tampering
from supervisor software. That is, the OS, hypervisor and other
software are considered to be the attacker [11], [31], [35],
[50], [55], [59], [62], [65], [73], [81], who will be referred to
as the SGX adversary for the rest of the paper. To use SGX,
users partition their applications into enclaves at some interface
boundary. For example, prior work has shown how to run
whole applications with a LibOS [7], [17], containers [64], and
data structure abstractions [62] within enclaves. At boot, hard-
ware uses attestation via digital signatures to verify the user’s
expected program and input data are loaded correctly into each
enclave. Isolation mechanisms implemented in virtual memory
protect enclave integrity and confidentiality during execution.

SGX uses the Enclave Page Cache (EPC) to store enclave
application code and data. The EPC is stored in a protected
region of memory known as Processor-Reserved Memory
(PRM). The processor prevents other system components from
reading the PRM with the help of another component, the
Memory Encryption Engine (MEE), that provides encryption
and integrity protection for the PRM [47]. The EPC has a fixed
size of 64 or 128 MB, shared among all enclaves [38]. For
applications requiring more memory, SGX uses an EPC paging
mechanism supported by the SGX OS driver. Specifically,
the OS can move pages out of/into the EPC and manipulate
them as if they were regular pages from a demand-paging
perspective. For security, pages moved out of/into the EPC are
transparently encrypted/decrypted and integrity checked by the
SGX hardware [36], [47].

1) Side-channel amplification: Despite providing strong
virtual isolation, SGX enclave code is still managed by un-
trusted software. Prior work has shown how this exacerbates
the side-channel problem described in Section II-B.

First, SGX does not provide any physical isolation. Thus,
nearly all of the µArch side-channel attacks discussed in
Section II-B immediately apply in the SGX setting.

Second, importantly, the OS-level attacker has significant
control over the enclave’s execution and the processor hard-
ware and thus can orchestrate finer-grain, lower-noise attacks
than would otherwise be possible. For example, controlled
side-channel attacks [76] and follow-on work [73] provide a
zero-noise mechanism for an attacker to learn a victim’s mem-
ory access pattern at page (or sometimes finer) granularity. A

2

https://github.com/dove-project/
https://github.com/dove-project/


line of work has further shown how the attacker can effectively
single-step, and even replay, the victim to measure fine-grain
information such as cache access pattern and arithmetic unit
port contention [11], [31], [34], [35], [50], [65], [72].

2) Threat model: Our goal is to prevent arbitrary non-
SGX enclave software from learning anything about the users’
data, other than non-sensitive information about the data such
as its bit length. Given SGX’s architecture, this implies pro-
tecting user data from leaking over arbitrary non-speculative
µArch side channels (Section II-B), given the powerful SGX
adversary described above.We do not defend against hardware
attacks such as power analysis [40], EM emissions [53], com-
promised manufacturing (e.g., hardware trojans [78]), denial of
service attacks, or speculative execution attacks [39] beyond
default SGX protections.

Note, when we refer to trusted computing base (TCB) we
mean the DOVE software that must function as intended—
i.e., be free of logic bugs and control-flow hijacking
vulnerabilities—for security to hold.

D. Data-Oblivious Programming

Data-oblivious (sometimes called “constant-time” in the
hardware setting) programming is a way to write programs that
makes program behavior independent of sensitive data, with
respect to the side channels discussed in Section II-B [2], [5],
[8]–[10], [13], [16], [20], [23]–[25], [28], [44], [44], [48], [51],
[52], [55], [59], [62], [63], [66], [67], [71], [74], [82]–[84]. In
the hardware setting, what constitutes data-oblivious execution
depends on the intended adversary. In the SGX setting, we
must assume a powerful adversary that can monitor potentially
any µArch side channel as described in Section II-C.

Thus, prior works that try to achieve data obliviousness in
an SGX context [2], [25], [28], [48], [55], [59], [62], [63], [84]
implement computation using only a carefully chosen subset
of arithmetic operations (e.g., bitwise operations), conditional
moves, branches with data-independent outcomes, jumps with
non-sensitive destinations, and memory instructions with data-
independent addresses. For example, an if statement with a
sensitive predicate is implemented as straight line code that
executes both sides of the if and uses a data-oblivious ternary
operator (such as the x86 cmov instruction or the CSWAP
operation) to choose which result to keep.

III. THE (LACK OF) DATA-OBLIVIOUSNESS OF R

Our goal is to protect R programs (and by extension
scientific computing) from the SGX adversary. As a starting
point, imagine we try to run secure R code by moving the
whole R stack into the SGX enclave (which is the approach
taken by prior work [7], [17]). If R were data-oblivious,
we could have security against the SGX adversary. However,
we show that security is not guaranteed, by demonstrating
subtle µArch side-channel attack vectors that come up in this
approach.

A. Case Study

To evaluate the data obliviousness of R, we worked with
an application of genomic data sharing to accurately represent

the kinds of R scripts data scientists use. The specific appli-
cation [6] aims to understand from genomics why honeybees
from Puerto Rico are gentle, like European honeybees, even
though they descend from aggressive Africanized honeybees
from South America. Genomes from 30 honeybees were
collected from Puerto Rico, Mexico, and the United States
to provide a total of 90 genomes.

Overall, this honeybee study simulates the idea that three
parties would like to derive critical information from their
combined data set without the need for a trusted third party to
consolidate the data. We did not work with truly sensitive data
in this study, but the characteristics of the data and the data-
sharing arrangement are essentially the same as would have
been used in the hypothetical bipolar disorder study mentioned
in the introduction. The honeybee data and code is available
for download and will be a good benchmark for future studies
of secuirty for genomics.

We reproduce the study in [6] with this data using R, but
truncate the total number of samples to 60 (due to machine
limitations). The study relies on R code drawn from a set of
13 genetics research programs [15] that implement important
statistical measurements found in the literature [29], [54], [70],
[75], totaling 478 lines of R code [15]. We refer to these
scripts as our evaluation programs. We evaluate 11 of these
evaluation programs as a part of our analysis, as they operate
on numeric values (rather than character strings or symbols).
The functionality of each of these programs is explained below.

• allele_sharing A program to calculate the allele
sharing distance between pairs of individuals [29].

• EHHS A program to calculate the EHHS values for a given
chromosome [70].

• hwe_chisq A program to test the significance of de-
viation from Hardy–Weinberg Equilibrium (HWE) using
Pearson’s Chi-Squared test.

• hwe_fisher A program to test the significance of
deviation from HWE using Fisher’s Exact test.

• iES A program to calculate the iES statistics [70]. The
code calls EHHS in computing its statistics.

• LD A program to calculate D, D′, r, χ2, χ2′, which are
statistics based on the frequencies of alleles in the input.

• neiFis_multispop A program to calculate inbreed-
ing coefficients, Fis [54], for each sub-population from a
given set of SNP markers.

• neiFis_onepop A program to calculate inbreeding
coefficients, Fis [54], for the total population from a given
set of SNP markers.

• snp_stats A program to calculate basic stats on SNPs,
including: allele frequency, minor allele frequency, and
exact estimate of HWE.

• wcFstats A program to estimate the variance compo-
nents and fixation indices [75].

• wcFst_spop_pairs A program to estimate Fst (θ)
values for each pair of sub-populations [75].

We perform our analysis of the data-obliviousness of R
using the code snippet in Figure 1 as a guiding example.
This code is found in four of the 13 evaluation programs,
and three more feature similar snippets. We use R version
3.4.4, compiled with default flags, on a Ubuntu Linux 18.04.4
machine for this study.

3



Fig. 1: R code snippet. geno is a sensitive diploid dataset.

1 geno[(geno!=0) & (geno!=1) & (geno!=2)] <- NA

B. Example Walkthrough

geno is a set of samples made up of diploid Single
Nucleotide Polymorphism (SNP) sequences. The database of
samples is represented as an m by n matrix, where each
column is one of n samples, each of which has m SNP
positions. Each position in the matrix has a genotype, denoted
as an integer 0, 1, or 2. The sensitive data is the contents of
geno, namely which genotype each SNP is for each sample.
The matrix dimensions (m and n) are non-sensitive.

The line of code in Figure 1 sanitizes the input database:
any entry that is not one of the three allowed genotypes
is replaced with the special value NA (Section II-A). This
occurs in real data due to noise in the sequencing process; in
particular, 1.5% of the SNP entries in the honeybee dataset [6]
are marked as NA. The code first computes element-wise fil-
ters geno != 0, geno != 1, geno != 2, each of which
produces a matrix of booleans (a mask) indicating whether the
condition is satisfied for each SNP position in each sample.
The logical AND (&) performs element-wise AND of these 3
masks (producing a new mask) which is used to conditionally
assign elements in geno to NA.

Given the above code, the adversary’s goal is to learn the
genotype at each SNP position—that is, whether the value
of each cell in geno is 0, 1, 2, or NA. Importantly, given
no additional information about R’s implementation, the R-
level code in Figure 1 follows guidelines for achieving data-
obliviousness (Section II-D), which would seemingly prevent
leaking the above information. For example, it applies simple
arithmetic/logical operations element-wise over matrices of
non-sensitive size, performs a count over a subset of samples
with a non-sensitive length, etc. Thus, combining each mask
with & entails performing a data-independent number of simple
logical operations (&); this is traditionally regarded as safe.

Yet, this code is not data-oblivious thanks to the transfor-
mations it undergoes in the R stack before reaching hardware.

In particular, the R interpreter transforms the line of code
from R into C calls. When R interprets &, it invokes the C
routine given in Figure 2a. This snippet takes different code
paths, depending on the values of x1 and x2, which the SGX
adversary can detect by single-stepping [72] or by replaying
the victim [65] and measuring time, branch predictor state, etc.
We investigate the side-channel characteristics of this with two
types of analyses: instruction-level and processor-level. The
following analyses apply well-established principles for writ-
ing constant-time and data-oblivious programs (Section II-D).

C. Instruction-level Analysis

We wish to experimentally verify the presence of such
side channels in the R codebase. We can identify them at
the assembly instruction level, as the C code that R functions
call runs as a part of a compiled library. We cover both the
static analysis of individual opcodes in the R binary, as well as
dynamic analysis of execution traces of the binary for different
input values.

1) Static opcode analysis: We identify the opcodes in the
R binary, libR.so, using the objdump utility. This converts
the compiled machine code into a human-readable opcode
format. Then, we sweep over the objdump output, looking
for vulnerable operations over data. In particular, we wish to
find branches on sensitive data, which can leak control flow
information and help an attacker reconstruct the secret.

Consider Figure 2b, which is the assembly for Lines 1 to
2 in Figure 2a. We note that the assembly shows a comparison
(cmp) between the values stored in rbp-0x58 (x1) and 0x0,
and rbp-0x54 (x2)) and 0x0. This constitutes a branchon
sensitive data, as the code will take different paths through the
code depending on the result of the computation (je, jne).
In this case, the attacker learns if one of x1 or x2 equals 0.
Since this & is applied to each SNP position of each sample
in Figure 1, this information is leaked for every SNP position.

2) Dynamic execution trace analysis: We now show how
this static analysis can be leveraged at runtime to leak the
secret. We use the branch-trace-store execution trace recording
mechanism [37] on our Intel Core i3-6100 CPU to counts
the number of instructions executed at the assembly level
for different inputs. ranch-trace-store hooks in GDB allow us
to step through the program, counting instructions between
breakpoints. Figure 3 for each possible input to &, as reported
by brance-trace-store. Confirming the above explanation, we
see that the instruction count equals 45 if and only if x1 equals
0. Thus, the adversary learns whether this is the case if it can
monitor a function of the instruction count. Other cases leak
other pieces of information such as whether both x1 and x2
equal 1.

Fig. 2: The R interpreter implementation of the & operator.

(a) C source code snippet of the & operator implementation.

1 if (x1 == 0 || x2 == 0)
2 pa[i] = 0;
3 else if (x1 == NA_LOGICAL || x2 == NA_LOGICAL)
4 pa[i] = NA_LOGICAL;
5 else
6 pa[i] = 1;

(b) The Intel-syntax x86-64 assembly for Lines 1 and 2 of the C code in
Figure 2a, lightly edited for clarity.

; x1 in [rbp-0x58], x2 in [rbp-0x54]
a8: cmp DWORD PTR [rbp-0x58],0x0 ; x1==0
ac: je b4 ; if true, jump to pa[i]=0
ae: cmp DWORD PTR [rbp-0x54],0x0 ; x2==0
b2: jne cf ; if false, jump to else if
b4: mov rax,QWORD PTR [rbp-0x50]
b8: lea rdx,[rax*4+0x0]
c0: mov rax,QWORD PTR [rbp-0x8]
c4: add rax,rdx ; calc addr of pa[i]
c7: mov DWORD PTR [rax],0x0 ; pa[i]=0
cf: ...

D. Intel PCM Analysis

Opcode and execution trace analysis is not sufficient to
cover the diverse (and undocumented) set of potential µArch
side channels, such as timing differences. We wish to show that
the data dependent execution visible at the opcode layer can be
verified by an attacker with access to side-channel information.

4



Fig. 3: The associated x86-64 instruction counts for different permu-
tations of x1 and x2 fed as input to & in R.

Expression Value Instruction Count
0 & 0 0 45
0 & 1 0 45
1 & 0 0 47
1 & 1 1 54
0 & NA 0 45
1 & NA NA 57
NA & 0 0 47
NA & 1 NA 53
NA & NA NA 53

Fig. 4: Intel PCM Functions used for dynamic analysis.

Function Name Criterion
getCycles cycle counts
getCyclesLostDueL3CacheMisses cycle counts, cache H/M
getCyclesLostDueL2CacheMisses cycle counts, cache H/M
getL2CacheHitRatio cache H/M
getL3CacheHitRatio cache H/M
getL3CacheMisses cache H/M
getL2CacheMisses cache H/M
getL2CacheHits cache H/M
getL3CacheHitsNoSnoop cache H/M
getL3CacheHitsSnoop cache H/M
getL3CacheHits cache H/M
getBytesReadFromMC bytes from/to MC
getBytesWrittenToMC bytes from/to MC
getIORequestBytesFromMC bytes from/to MC

Intel Processor Counter Monitor (PCM) is an Application
Programming Interface (API) to monitor performance of Intel
processors [21]. PCM offers various performance metrics,
some of which are direct indicators of side-channel vulner-
abilities. Such µArch measurements include cycle counts and
L2/L3 cache hits. We leverage this API to experimentally
check data-obliviousness of R function implementations.

We examined every performance metric that can be col-
lected from PCM and chose metrics (listed in Figure 4) that are
relevant for µArch side-channel detection. These metrics cover
one or more of three criteria: cycle counts, cache hits/misses
and bytes from/to the memory controller. These API functions
all begin with prefix get and are followed by the metric they
measure.

We illustrate an example using one of these measurements,
cycle counts. In this simple experiment, we show how such
small differences in instruction count from Figure 3 translate
into measurable effects. We measure the number of cycles
taken to evaluate one million iterations of expression 0 & 0
against those of 1 & 0. Having access to a large number of
measurements may occur naturally, e.g., if the sensitive data
is accessed in a loop, or if the attacker performs a µArch
replay attack [65]. Note that the difference of execution length
between two expressions is only two x86-64 instructions in
Figure 3.

Figure 5 visualizes 100 trials of cycle count measurements
against the aforementioned two sets of inputs in boxplots. The
left box shows distribution of 100 measurements for each
million iterations of expression 0 & 0 and the right box
represents measurements for expression 1 & 0. On average,
it took µ00 = 73.9 million cycles (σ00 = 441k) for (0 & 0),

0 & 0 1 & 0

7.35

7.40

7.45

7.50

7.55

N
um

be
r o

f C
yc

le
s

1e7

Fig. 5: Number of cycles taken to run one million iterations of 0
& 0 and 1 & 0. Each boxplot represents 100 measurements of each
expression.

but it took µ10 = 75.2 million cycles (σ10 = 416k) for
(1 & 0) on average. The cycle count differences vary by a
noticeable margin in the evaluation of these two expressions;
even in the box plot, there is a clear separation between the
experimental cycle counts of 0 & 0 and 1 & 0.

E. Discussion

These examples are only a small subset of the parts of R
that leak sensitive information. We discovered similar issues
for other logical operators | and xor(), as well as functions
like sum() found in its standard library. This, of course, does
not preclude vulnerabilities arising from data-dependent R
code. For example, an if statement with a sensitive predicate
can reveal that predicate to the SGX adversary [1], [27] in
R as well. Making matters worse are vulnerabilities due to
timing side channels of just-in-time compilation [12], the
timing differences of primitive C operations on floating point
numbers [5] (such as fdiv, used throughout R), and the use of
data-dependent glibc C library functions (e.g., pow(y,x)
and log(x)).

R is a large code base comprising 992,564 lines of code,
and is composed of hundreds of API functions and other
features, implemented in a combination of R, C and Fortran
[58].2 Thus, all existing µArch side-channel attacks on C
and Fortran applications must be considered when assessing
security of R stack.

Side-channels in R present a serious security problem.
Many data scientists and statisticians use R to compute on
sensitive data every day. Clearly, it is not tractable for these
users to understand the security implications of the code
they write. At the same time, R’s large code base makes
manually patching data leaks inherently haphazard and error
prone, even for security experts. As a result, experts have
hitherto focused on replicating R’s functionality in a new
language/stack [63]. While these techniques add security, they
trade-off expressiveness and usability by forcing data scientists
to rewrite their code for a new programming stack.

In the next section, we address this challenge by designing
the first secure R stack, where data scientists can program in

2Specifically, there are 388,141 lines of C, 345,547 lines of R and 258,876
lines of Fortran in the version of the R source we used for this paper.

5



(nearly) unchanged R, interact with the same R functionality
with which they are familiar, and have strong confidence there
are no latent side channels.

IV. THE DATA-OBLIVIOUS VIRTUAL ENVIRONMENT

We now describe our solution to these problems, the Data-
Oblivious Virtual Environment (DOVE). This begins with a
discussion of our design principles and solution overview
(Sections IV-A and IV-B). Section IV-C discusses the Data-
Oblivious Transcript (DOT), which serves as the link between
high-level programming and data-oblivious execution. Sec-
tion IV-D discusses the DOVE frontend, which is a set of
classes that convert R code into the DOT, using pseudonyms
instead of sensitive data. Finally, Section IV-E describes the
DOVE backend, an SGX enclave that converts the DOT
operations on pseudonyms to data-oblivious computation on
the actual sensitive data. For more details on the design
and implementation of DOVE, please refer to our NDSS ’21
paper [42].

A. Design Principles

To be a practical, yet secure, programming environment
for outsourcing scientific computation, DOVE requires the
following:

• Correctness. It is necessary to provide some evidence that
computed values are correct, at least for a basic collection
of computations. Importantly, R code run in DOVE must
have the same output as R code run outside of DOVE.

• Expressiveness. It is important to demonstrate that it can
code enough interesting cases to be worthwhile. DOVE
should be able to handle enough R functionality to be a
reasonable system for data science. Additionally, DOVE
should not require any changes or modification for a
user’s library of data processing scripts. In other words,
DOVE should be transparent to the user.

• Data-Obliviousness. Data-oblivious computation tech-
niques defend computation from the SGX adversary de-
scribed in Section II-C. DOVE should attempt to defend
against all known µArch side-channels, such as the ones
described in Section III, but be modular enough such that
it can be easily patched in case a new class of side-channel
is found.

• Efficiency. DOVE computations must sufficiently limit
computational overhead. Some overhead is to be expected
due to side-channel hardening and use of SGX, but it
should not be so much as to prevent real data-science
applications.

We developed this set of principles as a result of our
experiments on R. We wanted to combine the expressiveness
of R scripts with a data-oblivious core, while maintaining
the efficiency required for data science (and, of course, the
correctness). Our DOVE design aligns to these goals, and we
evaluate our success in achieving them in Section V.

B. Overview

DOVE’s security objective is to evaluate programs written
in high-level (e.g., interpreted) languages in a data-oblivious
manner (Section II-D). The key insight is that an operation

that is truly data oblivious does not require the actual data
to be present. Instead, the operation can take place on a
pseudonym of the data. These pseudonyms have the same
interface as normal data of the same type and support the same
operations. For example, matrices are replaced with matrix
pseudonyms, and matrix pseudonyms can be computed upon
using the same operations as normal matrices (e.g., element-
wise addition, matrix multiplication). However, the pseudonym
contains no sensitive data, i.e., all of its data entries are
replaced with ⊥. This pseudonym is constructed solely through
non-sensitive information specified for each pseudonym, such
as, for matrices, the number of rows and columns. However,
since the pseudonym does not actually have the data, any
operation on the pseudonym is functionally equivalent to a
NOP, i.e., ∗ ⊕ ⊥ → ⊥ where ∗ is a wildcard for any data
value and ⊕ is an operation on the data. Instead, the operation
performed is appended to a log. This log, which we call a
Data-Oblivious Transcript (DOT), is thus akin to a straight-
line representation of the execution of the input program. The
DOT can then be replayed on the actual data, executing the
same operations as the input program.

With this in mind we propose the following architecture,
shown in Figure 6. Our architecture is broken into two
components, making up a frontend and backend. Each of
N clients runs the same input — a common (non-sensitive)
high-level program — in their local environment (“frontend”).
The frontend replaces any references to sensitive data with
pseudonyms and generates a DOT of the input program. Al-
though only a single DOT needs to be generated for evaluation
later on, each client can optionally compute its own DOT
for program integrity-checking purposes (see Section IV-D for
more information). This TEE (“backend”) hosts the DOVE
virtual machine, which is built with data-oblivious primitives.
The virtual machine checks that all DOTs are equivalent
(optional, for integrity) and runs the operations listed on the
actual data.

Intuition for security comprises two parts. First, because
the DOT is conceptually an execution trace, the backend
TEE evaluates the same operations in the same order as the
R program input to the frontend, regardless of the sensitive
data provided to the backend. Importantly, the DOT was not
created using any sensitive data, so the functions listed in the
DOT are inherently independent/oblivious of that data. Second,
we will architect the backend to ensure each operation is
data oblivious, using well-established techniques for constant-
time/data-oblivious execution.

The above architecture is general. The frontend can be
adapted for different high-level languages (e.g., R, Python,
Ruby), and the backend can be implemented for a variety of
TEEs (e.g., SGX, TrustZone). For the rest of the paper, we
explain, design, and evaluate ideas assuming the frontend input
language is R and the TEE is SGX.

C. Data-Oblivious Transcript (DOT)

Relevant design principles: expressiveness,
data-obliviousness, efficiency.

The Data-Oblivious Transcript, or DOT, forms the core of
the DOVE architecture, bridging an input program written in a

6



Fig. 6: High-level overview of DOVE. Bold-face arrows between
nodes represent communication over (mutually-authenticated) TLS,
while thinner ones are intra-process communication within a compo-
nent. Shading indicates the location of our trusted computing base
(TCB).

Fig. 7: A DOT (left) and its associated R program (right). The matrix
x corresponds to the pseudonym $1 in the DOT, and the loop index
i with \1. 1© corresponds to line 1 of the program, 2© the for loop
on line 3, 3© the if statement on line 4, and 6© the assignment in
line 5. Intermediate values are stored in variables marked with %, and
constants are declared using #.

high-level language with data-oblivious execution on a secure
enclave. The DOT is designed to be built using only parameters
related to the computation that are non-sensitive (such as data
size). Because DOTs in DOVE are generated automatically, the
client programmer does not need to learn the DOT language to
write data-oblivious code. Once generated, the DOT is sent to
the backend, where it is used to “replay” the same operations
on the actual data (Section IV-E).

What to include in the DOT semantics strongly influences
the TCB size in the backend and DOVE’s overall performance.
The structure of the DOT is similar to straight-line code
where every operation is evaluated in the order it appears.
Conditionals, data-dependent loops, etc. must be emulated with
predicated, bounded execution as described below. Then, what
primitive operations to include in the DOT semantics becomes
a security/performance trade-off, because the cost to parse and
run each operation in the DOT incurs non-negligible overhead
in our current implementation (Section V-C). For example,
DOVE might implement a transcendental function such as sin
as a single primitive operation in the DOT or as a sequence
of simpler operations in the DOT (such as bitwise operations).
The former design is higher performance but requires a larger
TCB: the backend parses a single DOT operation and evaluates
that operation using a dedicated data-oblivious implementation
of sin in the target Instruction Set Architecture (ISA), e.g.,

x86-64. The latter has the opposite characteristics: the backend
parses each bitwise operation yet only needs dedicated sup-
port to implement data-oblivious bitwise operations. In these
situations, we decide what operations to include in the DOT
semantics on a case-by-case basis, described below and in
Section IV-D.

We now discuss DOT semantics in more detail, using
Figure 7 as a running example. We break the discussion into
two parts, first describing data creation and operations on said
data, and second describing (data-oblivious) control flow. A
formal EBNF grammar for the DOT can be found in the
paper’s extended version [41].

1) Data creation, types and operations: We first discuss
variable declarations, types and primitive operations.

a) Data types: When the frontend transcribes a pro-
gram into a DOT, the DOT grammar only allows program
inputs to be (1) fixed, concrete values or (2) pseudonyms.
The two basic types of pseudonyms are matrices and scalars,
with matrices being composed of m× n scalar (i.e., numeric)
elements. Each operation on a matrix is usually decomposed
into an operation on (1) its rows, (2) its columns or (3) its
elements. Thus, in the case where matrix dimensions are non-
sensitive, the sequence of operations needed to compute on
actual matrix data is fully captured in the DOT.

b) Operations on data: Core functions comprise the
set of primitive operations available to the DOT, including
mathematical and logical operators (e.g. +, ==), common
mathematical functions (e.g. exp, sin), and summary opera-
tions (e.g. sum, prod).

There are two flavors of operations supported in the DOT,
shown in first two rows of Figure 8. The Safe DOT/Core
category contains operations deemed safe to operate on sen-
sitive data in the backend. Every operation in this set must
be implemented data-obliviously by a compliant backend, i.e.,
its evaluation must result in operand-independent resource
usage on the target microarchitecture (see Section II-D). Each
operation in this set has the following type signature: if at least
one operand is a pseudonym, the result is a pseudonym. This
is similar to taint algebras in information flow [60], [69] where
if one operand is tainted, the result is tainted.

The Unsafe DOT/Core category contains operations which
the DOT deems not safe to operate on sensitive data. For
example, the forloop construct. These operations are only
allowed to take non-pseudonyms as operands. Importantly, the
selection which operations are marked Unsafe is a design
choice. An alternate set of DOVE semantics can specify a
Safe variant of any Unsafe operation, subject to the constraint
that the backend must support a data-oblivious implementation
of said Safe operation.

To summarize, we have:

• Rule 1: If an operation’s operand(s) are pseudonyms, the
result is a pseudonym.

• Rule 2: Safe operations may take pseudonyms or non-
pseudonyms as inputs. Safe operations must be imple-
mented data obliviously by the DOVE backend.

• Rule 3: Unsafe operations may only take non-pseudonyms
as inputs.

7



This is analogous to the Data-Oblivious ISA policy Confi-
dential data9Unsafe instruction, which is analogous to the
classic policy High9Low in information flow. If a DOT
follows the above rules, we call it a valid DOT. Whether a
DOT is valid is checked before the DOT is evaluated by the
backend (Sections IV-E), and invalid DOTs are disallowed.

2) Control flow: For reasons discussed above, the DOT dis-
allows traditional control-flow constructs such as if, while,
and goto, but supports predicated execution and bounded-
iteration loops (similar to the program counter model [51]).

a) Bounded iteration: The DOT provides a forloop
iteration primitive that only allows non-sensitive/non-
pseudonym predicates. This primitive further does not
support infinite loops. Loop indices are declared as non-
pseudonyms. We note that supporting forloop is purely
a performance/DOT size optimization. Equivalently, the
loop could have been unrolled and the forloop construct
removed.

b) Predicated conditionals: The DOT supports a
select primitive that takes a pseudonym-typed predicate and
returns one of two pseudonym operands based on the value of
the predicate. select supports both scalar (i.e., logical 0 and
1) and matrix predicates. Matrix predicates are transformed
into element-wise select operations between the predicate and
result/operand matrices. Thus, the predicate and its operands
must have the same dimensions.

D. Frontend

Relevant design principles: correctness,
expressiveness, efficiency.

The frontend takes R program with non-sensitive param-
eters as input and outputs a DOT. We develop our prototype
frontend for R, but stress that the structure of the DOT is
language-agnostic. As in a traditional compiler stack, one
could design a different frontend for a different language that
likewise compiles into the DOT representation.

Before initialization, clients share non-sensitive informa-
tion, such as names and dimensions of datasets, with each
other. The data within each dataset is considered sensitive and
is not shared. To create a DOT, a client sources the DOVE
frontend, which loads the names and dimensions for each
sensitive input and creates a pseudonym for each in the R
environment. The client then runs their program, performing
operations as normal. Instrumentation in the R interpreter
(see below) records each operation into the DOT, translating
each dataset to primitives supported by the DOT semantics
(e.g., scalar and matrix types). Clients can access elements,
assign new values, apply operators, and run functions, all
while dealing only with pseudonyms. Because the frontend
does not have the actual data, this transcription is sensitive
data-oblivious by design.

Our DOVE implementation ensures interface compatibility
with base R in the implemented functions of the frontend. We
use R’s S3 method dispatch to overload functions in base R for
pseudonyms. This requires no modification to the R interpreter,
as clients merely have to import the DOVE frontend in their
existing programs; in most cases, no programmer intervention
is necessary.

Figure 8 lists all functions available to programmers. The
Safe and Unsafe “DOT/Core” group of functions are those in-
cluded in the DOT semantics (see previous section). To provide
a richer library for clients, we also provide a “Supplemental”
group of functions which are built using only the operations in
“DOT/Core”. For example, colSums calls the DOT function
sum in a loop over the columns of a matrix. We provide these
functions to enhance the user programming experience and
to show that our DOT functions are sufficient primitives to
develop more complex functions. Note that the “Supplemental”
functions do not add to size of the TCB. They do not require
changes to DOT semantics and therefore do not change the
backend implementation.

1) Construct-specific handling: We now describe how the
frontend translates different R programming constructs to the
DOT semantics from Section IV-C.

a) Bounded iteration: Native R’s for loop is not DOT-
aware, so it just repeats the body of the loop m times.
Instead, the frontend automatically transforms such bounded
loops to use the forloop DOT construct. In our testing, we
observed a > 99% decrease in frontend runtime using the
DOT’s forloop loops over normal for loops for compute-
heavy O(m2)-complexity programs. Early loop termination
(e.g., break) is transformed in a manner similar to those of
prior works [13], [44].

b) Predicated conditionals: The frontend must translate
conventional if-then-else structures into the predicated execu-
tion model supported by the DOT (Section IV-C). For this, we
implement an if-conversion transformation that is similar to
prior works [20], [59]: an if-else with a sensitive predicate is
converted into straight-line code where both sides of the if-else
are unconditionally evaluated and a DOT select operator is
used to choose the correct results at the end. Our frontend
automatically converts R if statements to use the select
primitive (discussed in Section IV-C) in the DOT. The whole
expression is then recorded into the DOT directly; since the
frontend does not have access to the actual data, the DOT must
necessarily record both sides of the condition.

c) Disallowed constructs: Overall, the frontend’s job
is to translate R semantics into DOT semantics. Sometimes
this is not possible, in which case the frontend signals an
error. We explain two such cases (which are also common
issues in related work). First, the frontend does not allow
loops where the predicate depends on a pseudonym. Second,
the frontend does not allow running operations with unimple-
mented types e.g., string-based computation or symbol-based
computation. For example, one genomic evaluation program
named geno_to_allelecnt in Section III-A receives a
matrix of characters as a sensitive input. This program calls
string operations like substring search or string concatenation.

Importantly, mentioned before, the frontend may contain
a bug that results in an invalid DOT that contains an illegal
construct such as those mentioned above. Such non-compliant
DOTs are checked at parse time in the backend and rejected
before being run.

8



Fig. 8: DOVE functions/operations. Functions in group “DOT/Core” are implemented directly in the DOVE backend and are included in the
DOT semantics. Functions in the group “Supplemental” are implemented using operations in “DOT/Core” and exposed to the user as library
functions. Safe functions require a data-oblivious implementation in the backend as they may receive pseudonyms as operands. Unsafe functions
do not require a data-oblivious implementation, but can only take non-pseudonyms (non-sensitive) data as operands.

Group Functions
Safe DOT/Core abs sqrt floor ceiling exp log cos
(in TCB) sin tan sign + - * /

ˆ %% %/% > < >= <=
== != | & ! all any
sum prod min max range is.na is.nan
is.infinite select %*% cbind rbind

Unsafe DOT/Core forloop dim [ [[
(in TCB)
Supplemental fisher.test pchisq mean colMeans colSums rowMeans rowSums
(not in TCB) is.finite as.numeric as.matrix apply lapply unlist which

data.frame matrix split pmin pmax nrow ncol
len t

E. Backend

Relevant design principles: correctness,
data-obliviousness, efficiency.

The backend is a trusted SGX enclave (optionally, with
attestation support) that runs the DOVE virtual machine that
parses the DOT and runs the instructions contained within
on the clients’ sensitive data. Code in the backend ensures
that only valid DOTs are run (Section IV-C), and includes
implementations of all operations in the DOT semantics, i.e,
those listed under Safe and Unsafe “DOT/Core” in Figure 8.
Each client securely uploads (e.g., over TLS) the DOT of their
R program. All clients additionally upload their shares of the
sensitive dataset to the backend as well, in preparation for
processing, as shown in Figure 6.

The scope of DOVE is to block all non-speculative µArch
side channels (Section II-C2). For this purpose, the backend
provides a data-oblivious implementation for operations in
Safe “DOT/Core” of Figure 8. To implement these operations,
we rely on a subset of the x86-64 ISA and well-established
coding practices [20] for implementing constant-time/data-
oblivious functions (see Section V-B for details). For example,
we implement the select operation using the x86-64 cmov
instruction, and all floating-point arithmetic functions are im-
plemented using libfixedtimefixedpoint (libFTFP), a constant-
time fixed-point arithmetic library created as a work-around
for timing issues on floating-point hardware [5].

Importantly, what hardware operations (e.g., machine in-
structions) open µArch side channels depends on the µArch.
For example, two x86-64 processors can implement cmov
differently: one in a safe way, one in an unsafe way (e.g.,
by microcoding the cmov into a branch plus a move [81]).
DOVE is robust to new leakages found in specific µArch
because to block a newly discovered leakage, it is sufficient
to make a backend change. For example, if a vulnerability is
found in cmov, the backend can opt to implement the DOT
select operation using a CSWAP (bitwise operations) or
other constructs.

V. EXPERIMENTAL EVALUATION

We evaluate DOVE by designing experiments to validate
its four design principles of correctness, expressiveness, data-

obliviousness, and efficiency. We aim to use R as a baseline,
comparing its results to those of DOVE. In this way, we
validate DOVE using R as a reference. Our evaluations were
performed on a machine with an Intel Skylake Core i3-6100
CPU, 1 TB HDD, and 24 GB of RAM, of which 19.37 GB
was allocated to the SGX enclave. The machine was running
Ubuntu 18.04.4 LTS and SGX software version 2.9.1 with EPC
paging support. Thus DOVE’s memory is not limited to EPC
size, but this mechanism adds performance overhead when it
is required. The frontend ran under R interpreter version 3.4.4,
and the backend was compiled against g++, toolchain version
7.5.0-3ubuntu1˜18.04.

A. Correctness and Expressiveness

We combine our experiments to verify the correctness and
expressiveness properties of DOVE. We first perform unit tests
to check that individual R functions have correct output. We
then proceed to use examples to show that DOVE can express
solutions to real-world problems, and does so correctly.

1) Unit tests: For correctness, we confirm that what we
get from DOVE is the same as what we would get from R.
We perform simple unit tests. First, we ensure that frontend
generate the correct DOTs, transliterating R functions into
the appropriate DOT primitives. Then, we verify that the
DOT primitives are processed correctly on the backend and
output the expected result. Finally, we validate the end-to-end
functionality of the system, checking that R output and DOVE
(frontend-DOT-backend) output are equivalent.

2) PageRank: We begin with an introductory case study
on the PageRank algorithm that is used as a case study on
a custom data-oblivious programming language [63]. A large
proportion of this algorithm is composed of matrix multipli-
cations, which other works choose as primary performance
benchmarks [43], [59]. Our DOVE implementation of this
algorithm is found in Figure 9. Note that Line 4 is syntactic
sugar to generate a random matrix in the backend, without
putting those values in the DOT.

3) Evaluation scripts: We demonstrate that we can con-
veniently (and accurately) create DOTs from R code for our
evaluation programs, as described in Section III-A. Using
DOVE, we were able to transform (in the frontend) and run (in
the backend) 11 out of the 13 evaluation programs, totaling 326

9



Fig. 9: The DOVE-compatible implementation of PageRank in R.

1 page_rank <- function(M) {
2 d <- 0.8
3 N <- nrow(M)
4 v <- matrix(nrow = nodes, ncol = 1, rand =

TRUE)
5 norm_one <- sum(abs(v))
6 v <- v / norm_one
7 M_hat <- (M * d) + ((1-d) / N)
8 iters <- 40
9 for(i in 1:iters) {

10 v[,] <- M_hat %*% v
11 }
12 v
13 }

lines of R code. The first program that we could not implement,
geno_to_allelecnt, works on character data instead of
numeric data, and as such is not supported by the current
types available in the DOT. The second program, gwas_lm,
performs a Genome-Wide Association Study (GWAS) using
support in R for linear models. We were not readily able to
implement this; R provides parameters to models as a formula
of symbols, not values. DOVE currently does not support this
paradigm, but we believe that DOVE can be extended to do
so in the future.

Ten of the remaining 11 evaluation programs were au-
tomatically transformed by the frontend into data-oblivious
code. Only one program, LD, required manual intervention,
as it was written entirely in a data-dependent style. For this
program we: (1) replaced some functions that are intrinsically
data-dependent with data-oblivious primitives and (2) changed
lines that required sensitive data-dependent array indexing
with worst-case array scans. Future implementations could
alternatively use an oblivious memory, e.g., [62], to avoid such
worst-case work.

B. Data-Obliviousness

It is critical that the backend is secure against µArch
side channels. Our backend is implemented in a data-oblivious
style, only using constructs that are known to the side-channel
free on the x86-64 ISA. To avoid side channels that can
arise due to floating point numbers, we use a previously-
evaluated fixed-point library, libFTFP [5], designed to provide
computation on decimal numbers in constant time.

In our backend architecture, the only place we perform
computation on sensitive data is in what we term leaf func-
tions. These functions are at the “leaf” of our call tree, and
implements a specific DOT operation on data. Up to that
point in the call tree, our backend only operates on the DOT,
performing instruction fetch and setting up pointers to data
for the leaf functions. Only leaf functions dereference these
pointers, and then read and modify sensitive data. Verifying
data-obliviousness of these functions is a crucial assessment
of DOVE’s security promises. For more information on our
backend architecture, please refer to our NDSS’21 paper [42].

Based on the above discussion, we now scrutinize whether
these leaf functions enable our security guarantee, i.e., uphold
Rule 2 from Section IV-C. We use the same set of experiments
we used in Section III to verify the data-obliviousness of

DOVE. For this, we manually disassemble and analyze every
binary object file associated with DOVE functions, and verify
that the subset of instructions which operate on sensitive
data are instructions that do not create µArch side channels
as a function of their operands. We also inspect the PCM
characteristics of DOVE to identify any missed side channels.

Fig. 10: Intel-syntax assembly for BitwiseAndOp::call, the
DOVE backend equivalent of & in R. This snippet has been lightly
edited for clarity.

1 ; [snip] push current register state
2 ; initialize registers
3 mov r13,rcx
4 mov r12,rdi
5 mov rbp,rdx
6 mov rdi,rsi
7 mov rbx,rsi
8 ; convert fixed point number to int
9 call fixed_to_int(fixed)

10 mov rdi,rbp
11 mov r14d,eax
12 call fixed_to_int(fixed)
13 and eax,r14d ; the actual operation
14 mov rsi,r13
15 movsx edi,al
16 ; place `and` result into fixed
17 call place_bool_in_fixed(int8_t, fixed*)
18 mov rcx,r13
19 mov rdx,rbp
20 mov rsi,rbx
21 mov rdi,r12
22 ; [snip] pop previous register state
23 ; supercall to data-obliviously check for NAs
24 call BinaryOp::call(fixed, fixed, fixed*)

1) Static opcode analysis: We disassembled the object
files generated during compilation and manually looked at
every function that performed an operation on sensitive data.
The machine instructions that run in these functions are of
relevance to the security of DOVE, since insecure instructions
may leak information about the data. A slightly truncated
example of this disassembly can be found in Figure 10 for
the backend’s & operator used in our previous examples (e.g.,
Figure 1). Note the lack of branches on conditional data,
as compared to the disassembly in Figure 2b. Compilation
on different platforms can provide different results, so this
analysis may have to be reapplied.

We first analyze the leaf function instructions that take
sensitive data as operands. These instructions are shown in
Figure 11. We determined this set by inspecting instruction
dependencies in the objdump disassembly. All but one of the
opcodes in Figure 11 is considered to be a data-oblivious in-
struction by libFTFP, our constant-time fixed-point arithmetic

Fig. 11: All x86-64 opcodes that operate on sensitive data in the leaf
functions of DOVE. Those marked with * are those not found in
libFTFP.

add and cdqe cmovne* cmp imul
lea mov movabs movsd movsx movsxd
movzx mul neg not or pop
push sar sbb seta setae setbe
sete setg setl setle setne shl
shr sub test xor

10



library. We refer to its authors’ analysis for its security [5].
The one instruction not found in libFTFP, cmovne, is used
for conditional moves of sensitive data in the backend. This
instruction is likewise shown to be data oblivious in [59]. We
further verify that the above instructions use the direct register
addressing memory mode for each operand, if the value stored
in the register for that operand is sensitive (which also follows
standard practice for writing data-oblivious code).3 Thus, we
conclude that the machine instructions operating on sensitive
data in the backend do not create µArch side channels.

Beyond the instructions in Figure 11, there are other
instructions in the leaf functions that do not operate on sen-
sitive data. Examples include jumps to implement loops with
non-sensitive iteration counts, checks to validate dimensions
on operations, sanity checks for nullptr, and instructions
associated with implementing polymorphism. Some of these
are not data oblivious (e.g., jumps), but do not impact security
because they operate on non-sensitive data such as matrix
dimensions.

2) Dynamic execution analysis: To further corroborate our
static security analysis, we also looked at runtime instruction
statistics, as we did for R in Section III-C2. We used the
branch-trace-store execution trace recording [37] of the DOVE
backend execution, varying the input data. We found that
the sequence of non-speculative dynamic instructions executed
was independent of the data passed to the backend: that is,
the backend satisfies the PC model [51]. Security follows
from these two analyses: (a) that the backend follows the PC
model and (b) that each individual instruction that operates
on sensitive data consumes operand-independent hardware
resource usage (previous paragraphs).

10 20 30 40 50
proportion of NAs (%)

0.8

0.9

1.0

1.1

1.2

N
um

be
r o

f C
yc

le
s

1e7

90 80 70 60 50
proportion of genotype 0s (%)

7200000

7400000

7600000

7800000

8000000

8200000

8400000

8600000

N
um

be
r o

f C
yc

le
s

10 20 30 40 50
proportion of NAs (%)

1.09

1.10

1.11

1.12

N
um

be
r o

f C
yc

le
s

1e8

90 80 70 60 50
proportion of genotype 0s (%)

1.09

1.10

1.11

1.12

1.13

N
um

be
r o

f C
yc

le
s

1e8

Fig. 12: Cycle count measurements for runtime Intel PCM analysis
against Line 1 of Figure 1. Plots above are measurements from vanilla
R and plots below are from DOVE. The plots on the left are tested
against varying proportions of NA, and plots on the right are tested
against varying proportions of 0.

3x86-64 operands can utilize one of several flavors. For example, rax
denotes a register file read and [rax] denotes a memory de-reference. The
former is considered safe for use in constant-time/data-oblivious programming,
while the latter creates memory-based side channels.

3) Intel PCM: We additionally validate DOVE’s data-
obliviousness by repeating the PCM experiments we conducted
on the R interpreter in Section III-D. We performed PCM tests
on every function in the backend that correspond to the Safe
DOT/Core groups in Figure 8 on 14 metrics that previously
described.

For these tests we generate and compare synthetic matrices
with different data distributions, i.e., pairs of D and D′. As we
have seen from our instruction analyses, base R implementa-
tions handle corner cases for missing data (NA) and/or 0 (e.g.,
log(), exp()), such that varying the proportions of these
two values in the input matrix results in noticeable differences
in execution at the µArch level. Thus, we test our functions
with varying amounts of these two values. The first set tests
whether the function is data-oblivious against NA or not. This
set consists of matrices with five different proportions (10%,
20%, 30%, 40%, 50%) of NA. A second set tests whether
the function is data-oblivious against 0 or not. This set also
consists of matrices with five different proportions (90%, 80%,
70%, 60%, 50%) of 0. We generate 100 matrices of each
proportion randomly in both sets for our testing. The size of
each matrix is 1,000 by 60.

Figure 12 shows boxplots that illustrate 100 trials of cycle
count measurements against the aforementioned two sets of
inputs against Line 1 of Figure 1. Each box in the figure
represents 100 measurements of random input set with varying
proportions of either NA or 0. When Figure 1 was run on
vanilla R, the cycle counts differ drastically when the input’s
proportion of NA (top left) or 0 (top right) is varied. Both
plots at the top shows a linear increase in cycle counts as
the proportion changes, but measurements from DOVE do not
show such a trend against NA (bottom left) or 0 (bottom right).

C. Efficiency

We define efficiency in terms of performance, which we
measure primarily through the execution time of DOVE. This
is the most important metric in defining the practicality and
scalability of a solution like DOVE in a data-science context.

One run of our performance benchmark is as follows.
We first record the runtime of vanilla (insecure) R with data
and a program. Then, we run the DOVE frontend on the
same program, generating the DOT and writing it to disk.
We then initialize the backend, read in the DOT, parse it, and
execute the DOT instructions. Our evaluation of the DOVE
implementation discusses two measures. First, we wish to
consider if our frontend primitives are sufficient to express
complex programs. Second, we examine the performance of
DOVE when compared to its base R counterpart.

To highlight the overheads inherent to SGX and libFTFP,
the external data-oblivious fixed point library [5], we ran
performance benchmarks on three configurations of DOVE:
(1) backend outside an SGX enclave and without libFTFP,
(2) backend outside an SGX enclave and with libFTFP, and
(3) backend inside an SGX enclave and with libFTFP (our
default configuration). SGX-related overheads include SGX’s
memory encryption and access protections that isolate the
enclave from the rest of the machine [22]. In particular, EPC
paging (discussed in Section II-C) is a significant overhead,
especially for large datasets. These overheads were exacerbated

11



Fig. 13: Absolute runtimes and sizes of the evaluation programs. Programs marked with an * were run on a reduced dataset due to test system
limitations. Program iES calls EHHS, so we include the lines of code from EHHS when measuring lines of code for iES. FE are measurements
for frontend, NEBE are for measurements with backend without SGX, and EBE are for the backend with SGX. F indicates the use of libFTFP,
the data-oblivious floating point arithmetic library that we used on our DOVE implementation. LoC stands for Lines of Code for the original R
program whereas DOT size represents the size of the counterpart DOT file in bytes. Finally, the DOT overhead represents the relative overhead
of the DOT’s file size relative to the size of the original R program.

Program Vanilla R (s) FE (s) NEBE (s) NEBE w/ F (s) EBE w/ F (s) LoC (lines) DOT size (bytes) DOT Overhead
EHHS∗ 18.9 3.85 1104.43 2131.65 3575.46 40 1538 0.51
iES∗ 23.48 6.43 1106.34 2161.95 3625 15 + 40 159853 105.44
LD∗ 1787.58 3.64 2869.48 9040 32264 54 5610 0.98
allele_sharing 283.41 5.6 650.03 1841.28 29733 12 419 0.28
hwe_chisq 38.48 4.56 113.98 262.23 853.49 21 5295 4.35
hwe_fisher 690.2 4.98 141425 154194 234054 12 10287 3.92
neiFis_multispop 85.85 16.88 111.82 278.42 1077.44 38 5311 4.09
neiFis_onepop 39.13 4.9 55.85 192.53 764.38 19 7381 2.43
snp_stats 692.73 11.21 142783 155840 236644 33 1980 1.35
wcFstats 55.27 8.21 79.38 186.27 757.38 35 6624 1.58
wcFst_spop_pairs 74.05 15.43 206.55 458.26 1343.51 45 18606 5.21

by increases in the working set of the enclave application.
The libFTFP instructions’ relative performance overhead is
measured against its Streaming SIMD Extensions (SSE) coun-
terpart; the overhead varies depending on the instruction,
ranging from 1.2× for neg (operand negation) to 208× for
exp (exponential function evaluation) [5].

We utilize the dataset from the honeybee study [6] to per-
form performance benchmarking. We run the full 2,808,570 ×
60 (≈ 1.3 GB) dataset for all programs with space complexity
of O(m ∗ n) where m is the number of rows and n is the
number of columns. However, some of the evaluation programs
could not run on this dataset due to machine limitations.
Specifically, some programs with space complexity of O(m2)
refuse to run even in vanilla R at full size. To address these
limitations, we run a subset of programs with the first 10,000
rows of the honeybee dataset. Some related work also runs
performance benchmarks on genomic data with similar sizes
to that of our reduced dataset [18], [19], [61].

To normalize benchmark results run on datasets of different
sizes, we present a relative overhead metric: runtime for DOVE
(DOT generation, disk reading/writing, DOT evaluation) di-
vided by runtime in vanilla R. This relative overhead metric
is shown as stacked bar graphs in Figure 14, while raw
numbers can be found in Figure 13 Each part of the bar
represents the overhead contributed by a component of the
backend, categorized by three factors: the DOVE runtime’s
data-oblivious implementation itself, constant-time fixed point
operations (libFTFP), and the use of the SGX enclave. Overall,
each factor provides additional security at the cost of increased
overhead. We separate our programs into two bins: programs
that run on the full honeybee dataset, and programs that run
on a reduced dataset due to machine limitations (marked with
* across the subfigures).

The min/avg/max size overhead of each DOT relative to its
R script is 0.284x/10.8x/105x. Note, the DOT may be smaller
than the original program because of the DOT instruction set.
We expect that the DOT can be significantly compressed. Case
in point, the current DOT is represented in ASCII which is
space inefficient.

We now provide more detailed analysis for several pro-
grams with noteworthy performance characteristics.

1) Programs with quadratic space complexity: The relative
overhead with DOVE is 120.7× against vanilla R on average
for programs EHHS, iES, and LD. These three programs run
statistics based on pairwise SNPs, i.e., a row is compared to
each other row in the dataset. They operate in O(m2) space, or,
quadratic in the number of rows m. The large relative overhead
in the base DOVE implementation for iES and EHHS is due to
data-oblivious transformations. Namely, the vanilla R versions
of these programs benefit from early breaks in the loop
body that occur depending on sensitive values. DOVE does
not directly allow such behavior for security reasons. Hence,
the backend must iterate through the entire matrix, regardless
of the data, causing potentially high overhead.

2) Statistical programs: The programs hwe_chisq and
hwe_fisher each call a base R statistics function: pchisq
(Chi-Square distribution) and fisher.test (Fisher’s ex-
act test), respectively. The program snp_stats calls both
functions. In base R, the implementation of fisher.test
is written in R itself whereas pchisq is written in C.
We implement both as supplemental group functions in R
(Figure 8), to provide a fair comparison and to reduce TCB
size. When called, the frontend will convert the call into a
series of equivalent DOT operations.

We note that, to achieve data obliviousness, our implemen-
tations of these functions are somewhat different than their
vanilla R counterparts. For instance, computing a factorial of a
sensitive value is intrinsically data dependent, but it is required
to compute Fisher’s exact test (in R, fisher.test). To
implement factorial data obliviously, we implement it as an
oblivious table lookup over a pre-determined domain of inputs,
noting that other data-oblivious implementations are possible.

While hwe_chisq has reasonable performance overhead
given our data-oblivious implementation of pchisq, both
hwe_fisher and snp_stats show large performance
overheads. These programs call the fisher.test function
O(m) times. The insecure version of this function takes O(n)
time. Our data-oblivious implementation takes O(n2) time due
to inefficient oblivious-memory reads. As mentioned before,
a more efficient oblivious-memory primitive would reduce
overhead.

12



Relative Overhead

hwe_chisq

neiFis_multispop

neiFis_onepop

wcFstats

wcFst_spop_pairs

LD*

0 5 10 15 20 25

Base DOVE Implementation Constant-Time Fixed Point SGX Enclave

(a) Programs with less than 25× relative overhead.

Relative Overhead

allele_sharing

EHHS*

iES*

hwe_fisher

snp_stats

0 100 200 300

(b) Programs with greater than 25× relative overhead.

Fig. 14: Performance evaluation results for the evaluation programs.
Each stacked bar represents a measurement for each program. Each
stack represents relative overhead of DOVE against vanilla R caused
by generic data-oblivious computation, libFTFP and SGX from left to
right. Programs marked with * run on reduced dataset due to machine
limitations.

3) Remaining programs with linear space complexity:
The remaining programs do not incur a significant perfor-
mance penalty, as both the insecure and data-oblivious codes
run in O(m) time. The average overhead with DOVE is
28.3× relative to vanilla R for these programs. One program,
allele_sharing (in Figure 14b), has a notably larger
performance overhead than others when running inside the
SGX enclave. We believe this is due to EPC paging costs.
Specifically, this program has a larger working set size than
SGX has EPC/PRM (2 GB vs. 64-128 MB). It further makes
column-major traversals for a matrix that is stored in row-
major order in memory, which leads to low spatial locality
and therefore, we hypothesize, a high EPC fault rate.

VI. LESSONS LEARNED

We now discuss some of the lessons we learning during the
creation of DOVE. Our intermediate results helped us refine
our design in three areas: expressiveness, data-obliviousness,
and efficiency. We hope these observations will be useful to
the community.

1) Automating expressiveness: An early version of DOVE
was implemented as an R library instead of directly into R’s
base functions. This required end-users to rewrite their code
base using DOVE functions as provided by the library in order
to generate a DOT. In retrospect, this was not a good design,
as it restricts expressiveness to only those functions the user
knows how to use with DOVE. Under this design, a user
might as well learn a different, data-oblivious language. We
knew that we wanted to somehow automate the transformation
of R scripts into DOTs in the frontend. This is where the
evaluation programs [15] were useful. These scripts contain
usage of many different R constructs: S3 base functions,

statistical routines, and control flow structures, among others.
We used the evaluation programs as a benchmark to ensure that
our automatic conversion of scripts to DOTs was expressive
enough, leading to the frontend architecture in DOVE today.
The DOVE frontend transparently rewrites the S-expressions
for a parsed R script (Section II-A) to use data-oblivious
primitives. The end-user, in our implementation now, does not
need to manually write DOVE-compliant R code, and instead
can just run scripts out-of-the-box, thanks to the guidance
provided by having a real-world evaluation set.

2) Data-oblivious statistics: R has a rich set of statistical
functions baked into its standard library. To build some of
this functionality into DOVE, we pulled off-the-shelf open
source implementations and placed it into our backend as
an external library. One of this functions is fisher.test,
which calculates Fisher’s exact test of statistical significance.
Our evaluation programs [15] use this function to calculate
deviation of input data from the Hardy-Weinberg Equilibrium.
We did not consider the security implications of having an ex-
ternal library, nor did we fully understand the implementation
of fisher.test. However, after applying data-oblivious
tests to it, we noticed that it failed our instruction tests for
branches on sensitive data. This is due to fisher.test’s
use of factorials, which are data-dependent. We decided that
the best way of implementing fisher.test was to rewrite
it in data-oblivious R. The function calculates a large lookup
table of factorials, and data-obliviously retrieves the correct
value when needed. Thus, whenever a DOT running in the
frontend calls fisher.test, it calls the function in the
frontend, which itself is then transcribed into the DOT. This
guarantees the security of the statistical function (and shrinks
the TCB), but at a significant performance cost: 4.9× overhead
for the insecure variant versus 315× for the (current) secure
variant. This underscores the importance of inspecting the data-
oblivious characteristics of the entire TCB.

3) Efficient looping: Our original DOT design did not
have a forloop primitive. This meant that any loops used
in input R code would be fully unrolled, its instructions
copied into the DOT for each loop iteration. The DOT would
become size O(n) for loops of size n, which we initially
thought was reasonable – ostensibly, data science systems
have sufficient RAM to hold a large DOT in addition to
the data upon which to operate. Our experiments showed
that this was a flawed assumption. Evaluation programs that
combined matrices together explicitly had reasonable perfor-
mance in DOVE, while evaluation programs that explicitly
looped through matrices had terrible performance. The size
of the data from [6], combined with the overhead due to SGX
EPC paging (Section V-C), slowed evaluation to a crawl. We
realized that our backend had to minimize RAM in order to
have reasonable performance, and we thus implemented it,
reducing DOT complexity to O(1) for loops of arbitrary size.
We had to make additional efficiency jumps in order for our
data-oblivious code to be performant, even if correctness and
security properties were already guaranteed, in order to run
real-world workloads.

VII. CONCLUSION

Our architecture and implementation, DOVE, provides
strong security in the face of the strong adversary. This

13



adversary clearly can attack modern data science applications,
as evinced by the myriad of side-channels experimentally
visible in base R. The security of DOVE, on the other hand, is
not at the cost of expressibility or of usability; we implement
the vast majority of the mathematical functions and opera-
tors in base R, allowing us to transform and run non-trivial
genomic programs on real data. Rigorous evaluation on our
implementation shows our system is both truly data-oblivious
and feasible in practice. In this way, DOVE represents the best
of both worlds, spanning the gap between the security potential
of data-oblivious programming and the usability of existing,
insecure stacks. We hope that the experimental approaches
that we used in this work will be useful for future work in
the data-oblivious computation space.

REFERENCES

[1] Onur Aciicmez, Jean-Pierre Seifert, and Cetin Kaya Koc. Predicting
Secret Keys via Branch Prediction. IACR’06.

[2] Adil Ahmad, KyungTae Kim, Muhammad Ihsanulhaq Sarfaraz, and
Byoungyoung Lee. Obliviate: A Data Oblivious Filesystem for Intel
SGX. In NDSS’18.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garcı́a, and Nicola Tuveri. Port contention for fun and
profit. IACR’18.

[4] T Alves and D Felton. TrustZone: Integrated hardware and software
security. ARM white paper, 2004.

[5] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In S&P’15.

[6] Arian Avalos, Hailin Pan, Cai Li, Jenny P Acevedo-Gonzalez, Gloria
Rendon, Christopher J Fields, Patrick J Brown, Tugrul Giray, Gene E
Robinson, Matthew E Hudson, et al. A soft selective sweep during
rapid evolution of gentle behaviour in an Africanized honeybee. Nature
communications, 8(1):1550, 2017.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding appli-
cations from an untrusted cloud with haven. ACM TOCS’15.

[8] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records.
In PKC’06.

[9] Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code.
In FSE’05.

[10] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious
graph algorithms for secure computation and outsourcing. In ASIA
CCS’13.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure:
SGX Cache Attacks Are Practical. CoRR’17.

[12] T. Brennan, N. Rosner, and T. Bultan. JIT leaks: Inducing timing side
channels through just-in-time compilation. In S&P’20.

[13] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,
Yunlu Huang, Ranjit Jhala, and Deian Stefan. Fact: A flexible, constant-
time programming language. SecDev’17.

[14] Somnath Chakrabarti, Thomas Knauth, Dmitrii Kuvaiskii, Michael
Steiner, and Mona Vij. Chapter 8 - trusted execution environment
with intel sgx. In Xiaoqian Jiang and Haixu Tang, editors, Responsible
Genomic Data Sharing, pages 161 – 190. Academic Press, 2020.

[15] Eva KF Chan. Handy R functions for genetics research. https://github.
com/ekfchan/evachan.org-Rscripts, 2019.

[16] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-
oblivious and data-oblivious sorting and applications. IACR’17.

[17] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In USENIX
ATC’17.

[18] Feng Chen, Chenghong Wang, Wenrui Dai, Xiaoqian Jiang, Noman
Mohammed, Md Momin Al Aziz, Md Nazmus Sadat, Cenk Sahinalp,
Kristin Lauter, and Shuang Wang. PRESAGE: privacy-preserving
genetic testing via software guard extension. BMC medical genomics,
10(2):48, 2017.

[19] Feng Chen, Shuang Wang, Xiaoqian Jiang, Sijie Ding, Yao Lu, Jihoon
Kim, S Cenk Sahinalp, Chisato Shimizu, Jane C Burns, Victoria J
Wright, et al. Princess: Privacy-protecting rare disease international
network collaboration via encryption through software guard extensions.
Bioinformatics, 33(6):871–878, 2016.

[20] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De
Sutter. Practical mitigations for timing-based side-channel attacks on
modern x86 processors. In S&P’09.

[21] Intel Corporation. Processor Counter Monitor. https://github.com/opcm/
pcm.

[22] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR’16.
[23] David Darais, Chang Liu, Ian Sweet, and Michael Hicks. A language

for probabilistically oblivious computation. CoRR’17.
[24] Jack Doerner, David Evans, and abhi shelat. Secure stable matching at

scale. IACR’16.
[25] Saba Eskandarian and Matei Zaharia. An oblivious general-purpose

SQL database for the cloud. CoRR’17.
[26] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through

random number generator: Mechanisms, capacity estimation and miti-
gations. In CCS ’16.

[27] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Branchscope: A new side-channel attack on directional branch
predictor. In ASPLOS’18.

[28] Ben A. Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey
Gorbunov. Iron: Functional encryption using Intel SGX. In CCS’17.

[29] Xiaoyi Gao and Joshua Starmer. Human population structure detection
via multilocus genotype clustering. BMC genetics, 8(1):34, 2007.

[30] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. IACR’16.

[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In EuroSec’17.

[32] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security’18.

[33] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Side-channel analysis of cryptographic software via early-terminating
multiplications. In ICISC’09.

[34] D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing
access-based cache attacks on aes to practice. In S&P’11.

[35] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution
side channels for untrusted operating systems. In USENIX ATC’17.

[36] Intel®. Intel® software guard extensions programming reference. 2014.
[37] Intel®. Intel® 64 and ia-32 architectures software developer’s manual

volume 3b: System programming guide. 2020.
[38] Intel®. Intel® software guard extensions sdk for linux os developer

reference. 2020.
[39] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In S&P’19.

[40] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In CRYPTO’99.

[41] Hyun Bin Lee, Tushar Jois, Christopher W. Fletcher, and Carl A. Gunter.
DOVE: A Data-Oblivious Virtual Environment. In Arxiv eprint.

[42] Hyun Bin Lee, Tushar M. Jois, Christopher W. Fletcher, and Carl A.
Gunter. DOVE: A Data-Oblivious Virtual Environment. In Network
and Distributed System Security Symposium (NDSS), 2021.

[43] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. SIGPLAN Not., 50(4):87–101, March
2015.

[44] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine
Shi. Oblivm: A programming framework for secure computation. In
S&P’15.

[45] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In S&P’15.

14

https://github.com/ekfchan/evachan.org-Rscripts
https://github.com/ekfchan/evachan.org-Rscripts
https://github.com/opcm/pcm
https://github.com/opcm/pcm


[46] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine. 1959.

[47] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innova-
tive instructions and software model for isolated execution. HASP’13.

[48] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
efficient oblivious search index. In S&P’18.

[49] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Memjam: A
false dependency attack against constant-time crypto implementations.
CoRR’17.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How SGX amplifies the power of cache attacks. CoRR’17.

[51] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The
program counter security model: Automatic detection and removal of
control-flow side channel attacks. IACR’05.

[52] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi.
Graphsc: Parallel secure computation made easy. In S&P’15.

[53] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and
Milos Prvulovic. EDDIE: EM-Based Detection of Deviations in
Program Execution. In ISCA’17.

[54] Masatoshi Nei. F-statistics and analysis of gene diversity in subdivided
populations. Annals of human genetics, 41(2):225–233, 1977.

[55] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebas-
tian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party
machine learning on trusted processors. In USENIX Security’16.

[56] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA’06.

[57] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM addressing for cross-cpu
attacks. In USENIX Security’16.

[58] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2019.

[59] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In USENIX Security’15.

[60] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–
19, Jan 2003.

[61] Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed, Feng
Chen, Shuang Wang, and Xiaoqian Jiang. SAFETY: Secure GWAS in
federated environment through a hybrid solution with Intel SGX and
homomorphic encryption. arXiv preprint arXiv:1703.02577, 2017.

[62] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace :
Oblivious memory primitives from intel sgx. In NDSS’18.

[63] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan.
SGX-BigMatrix: A practical encrypted data analytic framework with
trusted processors. In CCS’17.

[64] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply:
Low-TCB linux applications with sgx enclaves. In NDSS’17.

[65] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher. Microscope: Enabling microarchitectural replay attacks. In
ISCA’19.

[66] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar. Tinygarble: Highly compressed and scalable sequential
garbled circuits. In S&P’15.

[67] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H. Hubert Chan, Christo-
pher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path
oram: An extremely simple oblivious ram protocol. CCS’13.

[68] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and
Sanjit A. Seshia. A formal foundation for secure remote execution of
enclaves. In CCS’17.

[69] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas.
Secure Program Execution via Dynamic Information Flow Tracking.
In ASPLOS’04.

[70] Kun Tang, Kevin R Thornton, and Mark Stoneking. A new approach
for using genome scans to detect recent positive selection in the human
genome. PLoS biology, 5(7):e171, 2007.

[71] Shruti Tople and Prateek Saxena. On the trade-offs in oblivious execu-
tion techniques. In Michalis Polychronakis and Michael Meier, editors,

Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer’17.

[72] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control. In
SysTEX’17.

[73] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX. In CCS’17.

[74] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine
Shi, Emil Stefanov, and Yan Huang. Oblivious data structures. IACR’14.

[75] Bruce S Weir and C Clark Cockerham. Estimating F-statistics for the
analysis of population structure. evolution, 38(6):1358–1370, 1984.

[76] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
S&P’15.

[77] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. In IEEE S&P,
2019.

[78] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester. A2: Analog
Malicious Hardware. In S&P’16.

[79] Yuval Yarom and Katrina Falkner. Flush+Reload: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security’14.

[80] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
Timing Attack on OpenSSL Constant Time RSA. IACR’16.

[81] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. Data oblivious isa extensions for side channel-resistant and
high performance computing. In NDSS’19. https://eprint.iacr.org/2018/
808.

[82] Samee Zahur and David Evans. Circuit structures for improving
efficiency of security and privacy tools. In S&P’13.

[83] Samee Zahur and David Evans. Obliv-c: A language for extensible
data-oblivious computation. IACR’15.

[84] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In NSDI’17.

15

https://eprint.iacr.org/2018/808
https://eprint.iacr.org/2018/808

	Introduction
	This paper

	Background
	Programming in R
	Computation in R
	Not Applicable (NA)

	Microarchitectural Side-Channel Attacks
	Enclave Execution and Intel SGX
	Side-channel amplification
	Threat model

	Data-Oblivious Programming

	The (Lack of) Data-Obliviousness of R
	Case Study
	Example Walkthrough
	Instruction-level Analysis
	Static opcode analysis
	Dynamic execution trace analysis

	Intel PCM Analysis
	Discussion

	The Data-Oblivious Virtual Environment
	Design Principles
	Overview
	Data-Oblivious Transcript (DOT)
	Data creation, types and operations
	Control flow

	Frontend
	Construct-specific handling

	Backend

	Experimental Evaluation
	Correctness and Expressiveness
	Unit tests
	PageRank
	Evaluation scripts

	Data-Obliviousness
	Static opcode analysis
	Dynamic execution analysis
	Intel PCM

	Efficiency
	Programs with quadratic space complexity
	Statistical programs
	Remaining programs with linear space complexity


	Lessons Learned
	Automating expressiveness
	Data-oblivious statistics
	Efficient looping


	Conclusion
	References

